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Preface

Technological advances in communication systems and the growing ease in
making small, low power and inexpensive mobile machines make it possible
to deploy a group of networked mobile vehicles to offer potential advantages
in performance, redundancy, fault tolerance, and robustness exceeding the
abilities of single machines. Formation is an extremely useful tool mimicking
from biclogical systems to man-made teams of vehicles, mobile sensors and
embedded robotic systems to perform tasks such as jointly moving in a syn-
chronized manner or deploying over a given region with applications to search,
rescue, coverage, surveillance, reconnaissance and cooperative transportation.
Inspired by the progress in the field, I present this monograph, Fermation
Control of Mobile Robots, to postgraduate students, researchers and engineers
with control background in Mechanical Engineering, Electrical Engineering
and Applied Mathematics. The book mainly consists of my research over the
last 7 years in the area of control of single nonholonomic vehicles and forma-
tion control of multiple agents and nonholonomic vehicles. Specifically, I focus
on unicycle-type mobile robots. The book consists of seven chapters and one
appendix. .

Chapter 1 classifies basic motion control tdsks for nonholonomic wheeled
mobile robots of unicycle type. Their modeling and main control properties
on the plane are then provided. This chapter sets out the basic material for
the subsequent chapters. *

Chapter 2 presents time-varying global adaptive controllers at the torque
level that simultaneously solve both tracking and stabilization for mobile
robots. Both full state feedback and output feedback are considered. Then
a constructive controller is presented to solve a path following problem. The
controller synthesis is based on several special coordinate transformations,
Lyapunov’s direct method and the backstepping technique..

Chapter 3 deals with a constructive method to design cooperative «con-

trollers that force a group of N mobile agents to afhieve a particular for-
»
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mation jn Yerms of shape and orientation while avoiding collisions between
thf:mselves. The controi development is based on new local potential functions,
which attain the minimum value when the desired formation is achieved, and
are equal to infinity when a collision occurs. The proposed controller devel-
opment is then extended to formation control of nonholonomic unicycle-type
mobile robots.

Chapter 4 investigates formation control of a group of unicycle-type mobile
robots with a little amount of inter-robot communication. A combination
of the virtual structure and path-tracking approaches is used to derive the
formation architecture. For each robot, a coordinate transformation is first
derived to cancel the velocity quadratic terms. An observer is then designed
to globally exponentially/asymptotically estimate the unmeasured velocities.
An output feedback contreller i designed for each robot in such a way that
the derivative of the path parameter is left as a free input to synchronize the
robots’ motion,

In Chapter 5, a constructive method, which is the base for the next two
chapters, is presented to design bounded cooperative controllers that force a
group of N mobile agents with limited sensing ranges to stabilize at a desired
location, and guarantee no collisions between the agents. The dynamics of each
agent is described by a single integrator. The control development is based on
new general potential functions, which attain the minimum value when the
desired formation is achieved, and are equal to infinity when a collision occurs.
A p times differential bump function is embedded into the potential functions
to deal with the agent limited sensing ranges. An alternative to Barbalat’s
lemma is used to analyze stability of the closed loop system. The proposed
formation stabilization solution is then extended to solve a formation tracking
problem.

In Chapter 6, based on the material presented in Chapter 5, a constructive
method is presented to design cooperative controllers that forde a group of N
unicycle-type mobile robots with Himited sensing ranges to perform desired for-
mation tracking, and guarantee no collisions between the robots. Each robot
requires only measurement of position and velocity of itself, and those of the
robots within its sensing range for feedfack. Physical dimensions and dynam-
ics of the robots are also considered in the control design. Smooth and p times
differential bump functions are incorporated into novel potential functions to
design a formation tracking control system. Despite the robot limited sensing
ranges, no switchings are needed to solve the collision aveidance problem.

Chapter 7, based on the material presented in Chapters 5 and 6, presents
a constructive method to design output-feedback cooperative controllers that
force a group of N unicycle-type mobile robots with limited sensing ranges to
perform desired formation tracking, and guarantee no collisions between the
robots. The robot velocities are not required for control implementation. For
each robot an interlaced observer, which is a reduced order observer plus an
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interlaced term, is designed to estimate the robot unmeasured velocities. The
interlaced term is determined after the formation control design is completed
to avoid difficulties due to ohserver errors and consideration of collision avoid-
ance. Smooth and p times differentiable bump functions are incorporated into
novel potential functions to design a formation tracking control system,

The Appendix A provides the reader with the mathematical background
utilized in the control design and stability analysis such as Lyapunov stability
theory, a series of Barbalat like lemmas, and p-times differentiable and smooth
bump functions.
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1

Modeling and Control Properties of Single
Mobile Robots

In this chapter, basic motion control tasks for nonholenomic wheeled mobile
robots of unicycle type will be first classified. Their modeling and main control
properties on the plane will be then provided. This chapter sets out the basic
material that will be used in the subsequent chapters.

1.1 Introduction

In automatic control, feedback improves system performance by allowing the
successful completion of a task even in the presence of external disturbances
and initial errors, and inaccuracy of the system parameters. To this end, real-
time sensor measurements are used to reconstruct the robot state. Throughout
this study, the latter is assumed to be available at every instant, as provided by
proprioceptive {e.g., odometry) or exteroceptive (sonar, laser) sensors. In some
cases, we also assume that the robot velocities are measurable or constructible
from position measurements.

We will limit our analysis to the case of axrobot workspace free of obsta-
¢eles. In fact, we implicitly consider the robot controller to be embedded in
a hierarchical architecture in which a highier-level planner solves the obstacle
avoidance problem and provides a series of motion goals to the lower control
layer. In this perspective, the controller deals with the basic issue of con-
verting ideal plans into actual motion execution. The specific robotic system
considered is a vehicle whose kinematic model approximates the mobility of
a three wheeled car. The configuration of this robot is represented by the po-
sition and orientation of its main body in the plane. Two velocity inputs are
avajlable for motion control. This situation covers in a realistic way many of
the existing robotic vehicles. Moreover, the three wheel roBot is the simplest
nonholonomic vehicle that displays the general characteristi¢s and the difficult
maneuverability of higher dimensional systems, e.g., of a four wheel car or a

Y
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2 1 Modeling and Control Properties of Single Mobile Robots

car t.owmg't:ra.ilers. Ap a matter of fact, the control results presented here can
be directly extended to more general kinematics, namely to all mobile robots
admitting a ch8ined-form representation.

The nonholonomic nature of the three wheel car-like robot is related to
the assumption that the robot wheels roll without slipping. This implies the
presence of a nonintegrable set of first-order differential constraints on the con-
figuration variables. While these nonholonomic constraints reduce the instan-
taneous motions that the robot can perform, they still allow global controlla-
bility in the configuration space. This unique feature leads to some challenging
problems in the synthesis of feedback controllers, which paraliel the new re-
search issues arising in nonhelonomic motion planning. Indeed, the wheeled
mobile robot application has triggered the search for innovative types of feed-
back controllers that can be used also for more general nonlinear systems that
describe motion of more complicated vehicles such as ocean and air vehicles,

1.2 Basic motion tasks

In order to derive the most suitable feedback controllers for each case, it is
convenient to classify the possible motion tasks as follows:

» Point-to-point motion: The robot must reach a desired goal configuration
starting from a given initial configuration, see Figure 1.1A.

s Path following: The robot must reach and follow a geometric path in the
cartestan space starting from a given initial configuration (on or off the
path), see Figure 1.1B.

e Trajectory tracking: The robot must reach and follow a trajectory in the
cartesian space (i.e., a geometric path with an associated timing law) start-
ing from a given initial configuration (on or off the trajectdry), see Figure
1.1C.

The three tasks are sketched in Figure 1.1, with reference to a three wheel
car-like rebot. Execution of these tasks can be achieved using either feedfor-
ward commands, or feedback control, or a combination of the two. Indeed,
feedback solutions exhibit an intrinsic degree of robustness.

Using a more control-criented terminology, the point-to-point motion task
is a stabilization problem for an (equilibrium} point in the robot state space.
When using a feedback strategy, the point-to-point motion task leads to a
state regulation control problem for a point in the robot state space. Pos-
ture stabilization is another frequently used term. Without loss of generality,
the goal can be taken as the origin of the n-dimensional robot configuration
space. Contrary to the usual situation, tracking and path following are easier
than regulation for a nonholonomic wheeled mobile robots. An intuitive ex-
planation of this can be given in terms of a comparison between the number
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A)
Goal
Start
B)
Start

Start

Trajectory

Fig. 1.1. Robot parameters.

of controlled variables (outputs) and the number of control inputs. For the
unicycle-like vehicle or three wheel car-like robot, two input commands are
available while three variables (position and orientation) are needed to deter-
mine its configuration. Thus, regulation of the wheeled mebile robot posture
to a desired configuration implies zeroing three independent configuratibn er-
rors. When ‘tracking & trajectory, and following a path, inst.egd,‘the output
has the same dimension as the input and the control problem is sguare.

1=
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4 1 Modeling and Control Properties of Single Mobile Robots

In the ;ath. following task, the controller is given a geometric description
ofsthe assigned cartesian path. This information is usually available in a pa-
rameterized form expressing the desired motion in terms of a path parameter,
which may be in particular the arc length along the path. For this task, time
dependence is not relevant because one is concerned only with the geometric
displacement between the robot and the path. In this context, the time evo-
lution of the path parameter is usually free and, accordingly, the command
inputs can be arbitrarily scaled with tespect to time without changing the
resulting robot path. It is then customary to set the robot forward velocity
(one of the two inputs) to an arbitrary constant or time-varying value, leav-
ing the second input available fér control. The path following problem is thus
rephrased as the stabilizatign to zero of a suitable scalar path error function
using only one control inpitt.  *

In the trajectory tracking task, the robot must follow the desired carte-
sian path with a specified timing law (equivalently, it must track a moving
reference robot). Although the trajectory can be split into a parameterized
geometric path and a timing law for the parameter, such separation is not
strictly necessary. Often, it is simpler to specify the workspace trajectory as
the desired time evolution for the position of some representative point of the
robot. The trajectory tracking problem consists then in the stabilization to
zero of the two-dimensional cartesian error using both control inputs.

The point stabilization problem can be formulated in a local or in a global
sense, the latter meaning that we allow for initial configurations that are ar-
bitrarily far from the destination. The same is true also for path following
and trajectory tracking, although locality has two different meanings in these
tasks. For path following, a local solution means that the controller works
properly provided we start sufficiently close to the path; for trajectory track-
ing, closeness should be evaluated with respect to the current,position of the
reference robot. The amount of information that should be provided by a
high-level motion planner varies for each control task. In point-to-point mo-
tion, information is reduced to a minimum (i.e., the goal configuration only)
when a globally stabilizing feedback control solution is available. However, if
the initial error is large, such a control may preduce erratic behavior and/or
large control effort, which are unacceptable in practice. On the other hand, &
local feedback solution requires the definition of intermediate subgoals at the
task planning level in order to get closer to the final desired configuration. For
the other two motion tasks, the planner should provide a path which is kine-
matically feasible (namely, which complies with the nonholonomic constraints
of the specific vehicle), so as to allow its perfect execution in nominal condi-
tions. While for an omnidirectional robot any path is feasible, some degree of
geometric smoothness is in general required for nonholonomic robots. Never-
theless, the intrinsic feedback structure of the driving commands enables to
recover transient errors due to isolated path discontinuities. Note also that the
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unfeasibility arising from a lack of continuity in some higher-order derivative of
the path may be overcome by appropriate motion timing. For example, paths
with discontinuous curvature (like the Reeds and Shepp optimal paths under
maximum curvature constraint) can be executed by the real axle midpoint of a
three wheel car-like vehicle provided that the robot is allowed to stop, whereas
paths with discontinuous tangent are not feasible. In this analysis, the selec-
tton of the robot representative point for path/trajectory planning is critical.
The timing profile is the additional item needed in trajectory tracking control
tasks. This information is seldom provided by current motion planners, also
because the actual dynamics of the specific robot are typically neglected at
this level. The above example suggests that it may be reasonable to enforce
already at the planning stage requirements such as "move slower where the
path curvature is higher”.

Y

1.3 Modeling and control properties

1.3.1 Modeling

Through out this book, we consider the unicycle-type mobile robot, which
under an assumption of no wheel slips has the following dynamics [1]:

n = J(n)w, (1.1)
Mo=-Ciw-Dw+7-

where 17 = [z y ¢]7 denotes the position (z,y), the coordinates of the middle

point, Py, between the left and right driving wheels, and heading ¢ of the robot
coordinated in the earth-fixed frame QXY see Figure 1.2, w = [w1 welT with
w1 and w» being the angular velocities of the wheels of the robot, 7 = [n rng
with 7, and 73 being the contro! torques applied to the wheels of the robot.
The rotation matrix J(5), mass matrix M, Corlohs matrix C{7), and damping
matrix D in (1.1) are given by

cos($) cos(¢)

-

r — | P11 g2
Ten) = 5 sm(qb) sm(qﬁ) , M= [mu M ] :
3 -
_|dn O
Cl) = [ ] D= [ . dn] (1.2)
with . ' )
c= Lrmea mu--if' (mb? + 1) + Lo, muz = 20"62_!)
2% Lt 4h° wn 462

m=mge+ 2my, =m.a®+ 2, w1 421, (1.3
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where my ;nd M. arg the masses of the body and wheel with a motor; I, I,
angd f,, are the moments of inertia of the body about the vertical axis through
P, (center of nlass), the wheel with the rotor of a motor about the wheel
axis, and the wheel with the rotor of a motor about the wheel diameter,
respectively; r,a and b are defined in Figure 1.2; the nonnegative constants
dy1 and dy2 are the damping coefficients. If these damping coefficients are zero,
we have an undamped case. On the other hand, if the damping coefficients
are positive, we have a damped case. Through out the book, we take the
physical parameters from [1]: b= 0.75, @ = 0.3, r = 0.15, m¢ = 30, my, = 1,
I. = 15.625, I, = 0.005, I, = 0.0025, dyy = dan = 5 with appropriate units
for numerical simulations 4

-

Sway axis X
o5
B
2 &) %
y > 5 Pasgive wheel
X/ uvated wheel
[ ¥ X

Fig. 1.2. Robot parameters.

For convenience, we convert the wheel angular velocities (y],wg) of the
robot to its linear, v, and angular, w, velocities by:

w =B 3,1[1_{’&] (1.4)

where w = [v w]7, and B is invertible since det(B) = —2b/r. With (1.4), we
can write the robot dynamics (1.1) as follows;

i = veos(d)
g,'f = ysin(¢)
= _
Mo = -C(w)w — Dw + Br (1.5)

where
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M=B"MB<= [ﬁ““ 0 ]
0 rhgy

- _ -1 - _ 0 —bew

Cw) = B-C@B = | o, 76" |,

D=B"'DB= [@” ‘E‘Q] B=5"!
doy daz |’ '

My = My + My, Mz = My — Mya,

- 1 - b
dyy = §(dui +das), diz = §(dn —dag),

- 1 - 1
day = %(dll — daz), dop = 5(‘111 + daa). ) (1.6)

1.3.2 Control properties

Since the last equation of (1.5} is a square system if we consider the robot
velocities v and w as outputs and the torques v; and 7 as inputs, we oaly
need to investigate control properties of the first three equations of (1.5), i.e.
we investigate control properties of the robot kinematic model:

z = voos(d)
¥ = vsin(9)
b=w (1.7
From the first two equations of (1.7), the nonholonomic constraint is
zsin(¢) — peos{d) = 0. (1.8)
Controflability at a point -

The tangent linearization of (1.7) at ang point 7, is the linear system
|

cos($e) 0 *
ﬁ = Si“(ﬁi’e}:l v+ |0|w, f=n-1n (1.9)
' 0 1

that is clearly not controllable. This implies that a linear controller will never
achieve posture stabilization, not even in a local sense. In order to study the
controllability of the unicycle, we need therefore to use tools from nonlinear
control theory [2]. Let’s define >

cos(¢) 0 ) ,
e IR . (110
0 1
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It is easy to ¢heck that the accessibility rank condition is satisfied globally {at
any 7.), since - -

) rank [ g2 o1, 0l =3 (1.11)
being the Lie bracket [g), go] of the two input vector fields
_ B¢ dg1 sin()
{91!92] = 87}' H 87? - - C?]S(é) B (1'12)

Since the system is driftless, condition (1.11) implies its controllability.
Controllability can also be shown constructively, i.e., by providing an ex-
plicit sequence of maneuvers bringing the robot from any start configuration
(25, Ys» D) to any desired godl configuration (x4, yg, @g). Since the unicycle
can rotate on itself, this task is simply achieved by an initial rotation on
(x5, ¥s) until the unicycle is oriented toward {wg, y,), followed by a transla-
tion to the goal position, and by a final rotation on (x4, 3,) so as to align
¢ with ¢,. As for the stabilizability of system(1.9} to a point, the failure
of the previous linear analysis indicates that exponential stability cannot be
achieved by smooth feedback [3]. Things turn out to be even worse: if smooth
{in fact, even continuocus} time-invariani feedback laws are used, Lyapunov
stability is out of reach. This negative result is established on the basis of a
necessary condition due to Brockett [4]: smooth stabilizability of a driftless
regular system (i.e., such that the input vector fields are well defined and
linearly independent at n.) requires a number of inputs equal to the number
of states. The above obstruction has a deep impact on the control design. In
fact, to obtain a posture stabilizing controller it is either necessary to give up
the continuity requirement and/or to resort to titne-varying control laws.

"

Controllability about a trajectory

Given a desired cartesian motion for the unicycle, it may be convenient to
generate a corresponding state trajectory ng{t) = (xa(t), y4(t), ¢a(t)). In order
to be feasible, the latter must satisly the nonholonomic constraint on the
vehicle motion or, equivalently, be consistent with the equation (1.9). The
generation of g4(t) and of the corresponding reference velocity inputs va(t)
and wg{t) will be addressed properly.

Defining the state tracking error as i} = 17— g and the input variations as
# = v — vy and ® = w — wy, the tangent linearization of system (1.9} about
the reference trajectory is

) 0 0 -—vysin{¢s) cos{¢g) 0 . 5
= |0 0 wvgcos{dyg) 17+ |sin(eg) 0 [{é] = A(H)7 + B(t) [m] .
00 0 0 1

(1.13)
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Since the linearized system is time-varying, a necessary and sufficient con-
trollability condition is that the controllability Gramian is nonsingular. How-
ever, a simpler analysis can be conducted by defining the state tracking error
through a rotation matrix as

cos(gy) sin(¢e) 0
fin = | —sin(¢q) cos(¢q) O] (1.14)
0 0 1

Using (1.9), we obtain

) 0 wg 0 10 5
Ar=1—wsg 0 vy|Hr+ |00 [ -] {(1.15)
0 0 0 01

-
-~

When vy and wy are constant, the above linear system becontes time-invariant
and controllable, since matrix

1 0 0 0 —w§ Vg

C=(B AB A’Bj=[0 0 -wg v 0 0O (1.16)
61 0 00 0

has rank 3 provided that either vy or wy are nonzero. Therefore, we conclude
that the kinematic system (1.9} can be locally stabilized by linear feedback
about trajectories which consist of linear or circular paths, executed with
constant velocity.

Feedback linearizability

Based on the previous discussion, it is easy to see that the driftless nonholo-
nomic system (1.9} cannot be transformed into a linear controllable one using
static state feedback. In particular, the controllability condition (1.11) implies
that the distribution generated by vector fields ¢; and g2 is not involutive,
thus violating the necessary condition for full state feedback linearizability {2).
However, when ‘matrix

cos(¢) O

G{n} = | sin(¢) 0 (1.17)
0 1

has full column rank, m equations can always be transformed via feedback into
simple integrators (input-output linearization and deeoupling). The choice of
the linearizing outputs is not unique and can be accommodated Yor special
purposes. An interesting example is the following. Define the two outputs as

[
’
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Y . » = + dcos(g)

. y2 = y + dsin(e) (1.18)

A

with d # 0, i.e., the cartesian coordinates of a point displaced at a distance d
along the main axis of the unicycle.
Using the globally defined state feedback

G-l 29z 0 o

the unicycle kinematic is equivalent to

i =u_
th=u
jote cos(¢) — wsin(g) (1.20)

d

As a consequence, a linear feedback controller for = = (u;, us) will make the
point B track any reference trajectory, even with discontinuous tangent to the
path (e.g., a square without stopping at corners). Moreover, it is easy to show
that the internal state evolution ¢(t) is bounded. This approach, however,
will not be pursued in this book because of its limited interest since the robot
orientation ¢(t) is not controlled.

Chained forms

The existence of canonical forms for kinematic models of nonholonomic robots
allows a general and systematic development of both open-loop and closedloop
control strategies. The most useful canonical structure is the chained form,
which in the case of two-input systems is

=

Za = uy

23 = 2ouj

Zn = 2p-111. (].21)

It has been shown that a two-input driftless nonholonomic system with up
to n = 4 generalized coordinates can always be transformed in chained form
by static feedback transformation [5]. As a matter of fact, most (but not all)
wheeled mobile robots can be transformed in chained form. For the kinematic
model (1.9) of the unicycle, we introduce the following globally defined coor-
dinate transformation
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=¢
23 = 2 008(¢) + ysin(@)
z3 = xsin(@) — ycos(¢} {1.22)

and a static state feedback

v =us + 231

Ww=1u (123)
to give
221 =1
i = uy
~ %3 = zouy. (1.24)

Note that (2g,23) is the position of the unicycle in a rotating left-handed
frame having the z; axis aligned with the vehicle orientation. Equation (1.24)
is another example of static input-output linearization, with zy and zo as
linearizing outputs. We note also that the transformation in chained form is
not unique.

1.4 Notes and references

This chapter sets out the material about the basic motion tasks, mathemati-
cal model and control properties of the unicycle-type mobile robots that will
be used in the subsequent chapters. Mathematical model and control prop-
erties of other types of mobile robots are given in {6] and [7], and of ocean
vehicles (robots) are given in [8] and [9]. Jt was also pointed out that regu-
lation/stabilization is much more difficult th4n tracking and path following
for a nonholonemic wheeled mobile robots, Since the rest of the book will not
address the control problem for the chain form (1.21) or (1.24), the reader is
referred to [10] for details on controlling a class of nonholonomic systems with
strong nonlinear drifts. This class covers the chain form (1.21).



2
Control of Single Mobile Robots

This chaptel first presents time-varying global adaptive controllers at the
torque level that simultaneously solve both tracking and stabilization for mo-
bile robots. Both full state feedback and cutput feedback are considered. Then
a constructive controller is presented to solve the path following problem. The
controlier synthesis is based on several special coordinate transformations,
Lyapunov’s direct method and the backstepping technique briefly given in
Appendix A, Sections A.1 and A4,

2.1 Simultaneous tracking and stabilization: Full state
feedback

2.1.1 Problem statement

We consider a mobile robot with two actuated wheels in Chapter 1. For con-
venience, we rewrite the equations of motidn here:

f = J{nkw . (2.1)
Mi=-Ci)w—Dw+r*

where all the state variables and parameters are defined in Section 1.3.1,
Chapter 1. We assume that the reference trajectory is generated by the virtual

robot:
tq = cos(dq)uia
Ya = sin(@d)mre (2.2)
ba = g .

where (z4, ¥4, da) are the position and orientation of the virtual gobot; uyge
and upq are the linear and angular velocities of the virtual robot{respectively.

1=
Ll
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Coni;rol’ objective: Under Assumptions 2.1 and 2.2, design the control 7
to force the position and orientation, (x,y, ¢} of the real robot (2.1) to glob-
ally asymptotically track (x4, ya, 94) generated by (2.2).

Assumption 2.1 The reference signals v14, %14, thd, u2q and taq are bounded.
In addition, one of the following conditions holds:

c1. / (ftra®)] + leza(®)] + lina(@)]) dt < g,
J %

i

C2./([u1d(t)|+ ra(E)Ldt < par and |uza(t)] > pros, ¥ 0 < ¢ < 00,
/ s

C3. |u1d(t)| 2 i3, Vo<t <oo

where ) and pg are nonnegative constants, psp and us ave strictly posi-
tive constants.

Assumption 2.2 All of the robot parameters are constants but unknown, and
He in a compact sel.

Remark 2.3. The problem of set-point regulation/stabilization, tracking a
path approaching a set-point is included in C1. Tracking linear and circular
paths belongs to C3. Condition C2 implies that the case, where the robot lin-
ear velocity is zero or approaches zero and its angular velocity is of sinusoidal
type, is excluded. The reason is that our control approach is to introduce a
sinusoid signal in the robot angular velocity virtual control to handle set-point
stabilization/regulation. Therefore, this case is excluded to avoid two signals
from canceling each other. If the reference velocity usg is known completely
in advance, the above case can be included.

Remark 2.4. The problem of simultaneous stabilization and tracking not only
is of theoretical interest but also possesses some advantages over the use of
separate stabilization and tracking controllers such as only one controller and
transient improvement because of no switching. Moreover, if the switching
time is unknown, a separate stabilization and tracking contro] approach can-
not be used.

2.1.2 Control design

We interpret the tracking errors as

Te cos(¢) sin(¢) 0] [x — =4
Ye | = | —sin(d) cos(o} 0| |y —wa |- (2.3)
e 0 0 1] 19—
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Indeed convergence of (¢, Ye. @) to zero implies that of (z—z4, ¥—ya, d — da).
Using {2.3), (2.2) and the kinematic part of (2.1), we have the kinematic
tracking errors:

Ze = 1ty = t1g08(Pe) + b7 yetsy

Yo = w148I{Pe) — b oy (2.4)

$e = rb tug — usy
where #; = 0.5(w) +w2), uz = 0.5(w) —ws3). Now if u; and us are considered
as virtual controls, we can see directly from (2.4) that z. and ¢. can be
stabilized by u: and uws. Motivated by the car driving practice, we will use
¢, as a virtual control to stabilize y.. Toward this end, we introduce the
coordinate transformation:

»

_ k(e
Ze = ¢ + arcsin (——Q-l—),
k(L) = Adyuyq + g cos(Ast),

= V1+a2+y?2 {2.5)

where A, i = 1,2, 3 are positive constants such that k()] < 1, V¢. They will
be specified later. It is seen that {2.5) is well defined. We now use (2.5) to
write the tracking error dynarmics as:

T, =71y + f.’c + b_lyeu2s

e = _kuldﬂl_l‘ye + fy - Tb_lweuz‘

2o = rb Yun(l — k27 ze) + £ + rg,u,
Mo=-CH)w-Duw+r (2.6)

where for simplicity of presentation, we have dropped the time argument of
k(t), and have defined:

-
v

2 = /1422 + (1 - k)2,
fr = —u1g(cos{z. 1927192, +§in(ze)kﬂl'lye).
fu = —wal(cos(ze) — DT 2 + sin(ze }k82y e ),

fr= —upa + ﬂg_l(kye +kfy - *"’“Ql-g(“"‘cf’r +yeSy)):
g = —kazf?;!xeyc- (27)

The effort, we have made so far, is to have the term —kuya§2; 1y in the
y.-dynamics, and to put the tracking error dynamics in a triangular form of
(2.6). We now design 7 to stabilize (2.6} in two steps. *

Step 1. Define the virtual velocity tracking errors fi; anddiz as

U] = U1 — U, Uz T U2 — Uze (2.8)
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.

where y1,¥and ug. are the virtual controls of u; and uo. To design uy., we
take the Lyapuanov flnction:
L 3

Vi = r~H{82 - 1) + 0.5974 6% (2.9)

where v,; is a positive constant, é” = fyy ~ én with én being an estimate
of 811 := r~}. Differentiating both sides of (2.9) along the solutions of (2.6),
(2.8), and choosing uy, as '

e = —k1ze — 011 fs,
br1= 11192 xS (2.10)
where ky is a positive constant,.result in
Vi =~k 72 ~ kuiar T 2772 + Q7 et +r T Mg fy (210)
To design the virtual control us., we take the Lyapunov function
Va = Vi +0.50r 122 + 0.5v;,'6%, + 0.57;5 6%, (2.12)

where 412 and y3 are positive constants, 01; = 61 ~ By, 1 = 2,3, with by,
being an estimate of 8y, o = r~18, 813 = b. Differentiating both sides of
(2.12) along the solution of the third equation of (2.6), the second equation
of (2.8), and choosing the virtual control ug. as

1 . .
Uge 7= e [ fip 2% = - 1),
2¢ 1_le.1$c( 225 =~ 012 fz — O1ag:11c)
br2 = m22ef>, -~
f13 = M3zed:t (2.13)

where ko is a positive constant to be specified later, give

Vo= —kif27 % = kuraf? 202 = koz + v 00 0 fy +
(27 e + Brazeg: )iy + (1~ kO )2t (2.14)

Remark 2.5. From (2.5), (2.10} and (2.13), one can consider u), and u;. a5 an
interesting combination of time-varying stabilization and tracking controllers
proposed in literature, if the robot velocities are used as the actual inputs.
In fact, setting A = 0 results in w;. and ug, similar to a tracking control
_law proposed in the literature. On the other hand, setting A; = 0 results in
). and ug. similar to a stabilization control law in the literature. However,
our approach is different from those existing ones in the sense that the robot
orientation error g, is used as a virtual control to stabilize the y.-dynamics.
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Step 2. Defining @1 = wy —whe, W = we—wsz, with wie = U+ e, wo =
Upe — Uge, alnd using (2.8} result in &) = 0.5(w; + &), de = 0.5{ — Da).
Therefore, we have & = w —w, with @ = [in &2]T, we = fwic wa)T. Differen-
tiating both sides of & = w—w,, multiplying by M and using the last equation
of (2.6) result in

Mo=-Do+¢6 +7 (2.15)

where the regression matrix ¢ and the unknown parameter vector &, are
defined as

&= [*wlﬂz ~wie 0 =L~ ~$h2 —{22 —fh3 —923] (2.16)
waty 0 —wae —f21 —fhy —$y —Shp Sz —Sh3 |’ '

O = [g;mcd diy de2 my Mz mur mur m:r m;fr]T
with
5 = mefx 2 (ka7 4+ fy) + ‘vafz
Ye Ze
Bg};‘:k + 6w:k + aa%j‘;ﬂld + gzicﬁz + JZS; a%:_élj,
£ = (;w,: % Uy,
Qi3 = %y,ug %“’e Tous + %“’“ (1 = k27 2,) v (2.17)

for i = 1, 2. To design the actual control input vector 7, we take the Lyapunov
function

Vs=Va+ 050" Mo &I 1519,) (2.18)
where the adaptation gain matrix I3 = Fr}"x is positive definite, 8, = 8, — G,
with &, being an estimate vector of ;. Differentiating both sides of (2.18)
along the solution of {2.15) and (2.14), and choosing the actual control 7 as

7= —Kyii— 895 — 0.5 27 'z + 13zeg, + (1 - kﬂl'la:e)ze]

f)l‘lxe +913zegz -1~ ,‘c.Ql_l..'v:e)z,2
6, = 1Ty (2.19)
where K2 = KT > 0, result in .

V= —k 027 2% = kuygf2; %2 -
kz .,:
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It is nated from (2.7) that |r—2 27 'y fy| < e ud gyl + r~2e 722 with £
being a positive congtant. Substituting &(t) in {2.3) into (2.20) yields
Vs < —ky S22 - Wi 0272 (A — )y ~ Ap cos(Aat)u1a 27 2yt —

(ko — 1% )22 — GT(D + Ky)a. {2.21)

We now present the main result of this section.

Theorem 2.6. Under Assumptions 2.1 and 2.2, there ezist'appmpriate design
constants k2, A;, © = 1,2,3 such that the adaptive control law {2.19) forces
the mobile robot (2.1)"to globally asymptotically track the virtual vehicle (2.2).

-
Proof. As required in (2.5), we first choose the design constants X; and
A2 such that Jk(£} < 1, ie. *

Aulf +r <1 (2.22)

where u§%* denotes the maximum value of Ju14(t)|. From (2.21}, Ay and ko
are chosen such that
M >e, kg >rple! (2.23)

where Tmin denotes the minimum value of r. We now consider each case of
Assumption 2.1,

Cases C1 and C2. From (2.21), we have
Va < —k 02722 — k072 (01 — 92 + Aol -

(ky —r 2122 —&T(D + Kp)@ (2.24)
By integrating both sides of (2.24), it is seen that Vi(t} < my(-) with 1r3( )
being a class-K function of [[X.(to}| with X, = [re,yerze. B, 815, 6.)7.

An application of Barbalat’s lemma {Lemma A.25) to (2.24) shows that
Himy— oo (e (t), 2:(t), &(t)) = 0. Also from i) = 0.5{w; +w2), @y = 0.5(&; —
&@7), we have hrnt_.m(ul(t) iz(t)) = 0. Since Vg(t) < w3(-), we have that
ve(t),014, 1 = 1,2,3 and &, are bounded. Hence b1:,3 = 1,2,3 and &, are
bounded as well. To prove that lim;_o ¥.(t) = 0, we substitute u) = uj. +
and vy = ug. + iz with us. and us. being given in (2.10) and (2.13) to the
first equation of (2.6) to have

&, = —krze + 020) (2.25)
()= réllfz +rigg + %ye'ﬁa +

b—u“:%?'l-—:‘i( koz? — brafy — brags(—k1ze — D11 fz)). (2.26)

Applying Lemma A.27 to (2.25) yields lim;— £2(-) =
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From (2.7}, lims— oo t14{t) = 0 and lim,_co{z (2}, ze(t), G1(2), G2(t)) = 0,
it is readily shown that lim;. £2(-) = 0 is equivalent to
Aa)g sin{ Ast) e (t)
V14 (1~ (Az cos(Ast) )2}yl

To show that limy—o; y.(¢) = 0 based on (2.27), we investigate C1 and C2
separately.

zlin‘;o (yc(t) [ — ugq + (Arthg —

(t)]) =0. (2.27)

For the case C1, since lim¢_qo(uzq(t), #14(t)) = 0, we can equivalently
write (2.27} as
tl_i.rgo(,\gf\gyg sin{Agt)) = 0. (2.28)

¢
But from (2.24), we have %{V;} — [ 1Asug{r}ldr} < 0, which implies that
- o

t
Vs ~ [|Azu14(r)| dr is non-increasing. Since V3 is bounded from below by
a

zero, V3 tends to a finite nonnegative constant depending on || X {ts)]. This
implies that the Yimit of |y, ()] exists and is finite, say {,_. If {,_ were not zero,
there would have existed a sequence of increasing time instants {;};=, with
t; — 00, such that both of the limits of sin{Ast;) and |y.(t;)] are not zero,
which is impossible because of {2.28) for any A2 > 0 and Az > 0. Hence [,
must be zero, i.e. limy_, o y.(£} = 0 in this case.

For the case C2, since limy— o, %14{t} = 0, we can equivalently write (2.27)
as

. Aghg sin(Aaf)ye(t)
lim t) | —uag + =0 2.29
5, (‘”‘( ’ [ 4t T (= O cos0al) DD (229)
Since (9l < —pden And L|tizg(t)| > f222 > O in this case,

VIH(I—(a cosOat)Hpl (1) = /1-23
if we chooge any A2 > 0 and A3 > 0 such that

(2.30)

then (2.29) implies that lim;_ o p.(t) = 0. It is noted again that in this case
if we do not assume that ugq is not of sinusoid signal, the square bracket in
(2.29) might be zero at certain time instants t; with y.(;) 7 0. Consequently,
one cannot prove lim;_,, y.{t) = 0 based on {2.29).

Case C3. In this case, we rewrite (2.21) as . . .

Va < —ki27 a2 — (w4 — €) = Ao ) 927 Py
(ks = r~ %122 - &T(D + Ko)o {2.31)
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Therefoxe, §f we choose the design constants A; and Az such that

. ufg(M — €) = A2 lural 2 pa (2.32)
where ;14 i3 a strictly positive constant, {2.31) is equivalent to
Vs € —kadd7 e — pg 0722 — (hy — v 72 N2 - 0T (D + K)o (2.33)

Integrating both sides of (2.33) and using Barbalat’s lemma show that
limyy— oo (. (£), ye (£}, z.(t), &(t)) = 0. From (2.3), one can write (2.32) as

A < (A — €)ph — pa)/uliy™. (2.34)

In summary, the design eonstants Aj, A2, Az and ka are chosen such that
(2.22), (2.23), (2.30) and (2.34) hold.

2.1.3 Simulations

In this section, we perform some numerical simulations to illustrate the ef-
fectiveness of the proposed controller in the previous section. We only do
simulations for cases C1 and C3. The physical parameters are given in Sec-
tion 1.3.1, Chapter 1. The reference velocities are chosen as: for the case Cl:
u1d = tgg = 0; for the case C3: uyg = 2, ugg = 0 for the first 20 seconds and
14 = 2, tigg = 0.1 for the rest. The initial conditions are picked as: (37, v7) =
((1,1,0.2), (0,03}, (24, ya, $a) = (0,0,0). We take all of initial values of the
parameter estimates to be 75% of their true values. Based on Theorem 2.6,
control and adaptation gains are chosen as ky = 2,k = 5, Ky = diag(2,2),
A =04, 0 =00513 =4, v; =2, 1 =1,2,3, I3 = diag(2). 1t is verified
that the above choice satisfies requirements in Theorem 2.6. Results are plot-
ted in Figures 2.1 and 2.2. Slow convergence of the errors in the case Cl is
a well-know effect when using smooth time-varying controliers. Note that we
only plot the tracking errors and control inputs in the case C3 for the first 30
seconds.

2.2 Simultaneous tracking and stabilization: Qutput
feedback

2.2.1 Problem statement

We consider a mobile robot with two actuated wheels in Chapter 1. For con-
venience, we write the equations of motion here;

= J(nw
Mo+ Ciyw +Dw=r1 (2.35)
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Fig. 2.1. Simulation results subject to C1, Top-left: Robot position in (x,y) plane;
Top-right: Tracking errors; Bottotn: Coutrols.

where all the state variables and parameters are defined in Section 1.3.1, Chap-
ter 1. We assume that the reference trajectory is generated by the following
virtual robot; .

L]

.'itd = COS(gbd)um
Ya = sin{da)u1a . (2.36)
b = uzqg

where (x4, v4, Pq) are the position and orientation of the virtual robot; 14
and usg are the linear and angular velocities of the virtual robot, respectively.

Control objective: Under Assumption 2.7, design the control input vec-
tor T to force the position and orientation, (x,y, ¢) of the real robot (2.35)
to globally asymptotically track (z4,ya,d¢) generated by' (2.36) with only
(z,y, ¢) available for feedback.

*

Assumption 2.7 The reference signals uig, 4, U1d, Y2g and t‘m are bounded.
In addition, one of the following conditions holds:
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Fig. 2.2. Simulation results subject to C3. Top-left: Robot position in {x,y) plane;
Top-right: Tracking errors; Bottom: Controls.

cL. / (ura(8)] + Juaal)] ) dt < s
0

c2. f fusg(t)| de < i and Juga(t)] >
1]

¢
C3. fufd(f)d'r > F1%31 (t - to) — a3z, Yt Z to 2 0 (237)
ta

where p11, po1 and pas are nonnegative constants; uzp and pg; are strictly
positive consiant.

2) The robot wheel velocities w = [wy  w2]7 are not available for feedback.
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Remark 2.8. All remarks followed by Assumption 2.1 hold for the item 1) of
Assumption 2.7, Moreover, the item 2) of Assumption 2.7 implies that we
need to design an output feedback controller.

—

2.2.2 Observer design

‘We first remove the guadratic velocity terms in the mobile robot dynamics by
introducing the following coordinate change:

X = Qo) (2:39)

where Q(n) is a globally invertible matrix with bounded elements to be de-
termined. Using (2.38), we write the second equation of (2.35) as follows:

X = [Qnw — QM C(mw] + QMM (-Dw + 7) (2.39)

~ In [11], the author requires Q{n) with the above properties such that
Q(n) = QIMM1C(H), ¥n € R?, which does not exist as a simple calculation
shows.

Our method is to cancel the square bracket in the right hand side of (2.39)
for all (n,w) € R®. We assume that g;;(n), ¢ = 1,2, = 1,2 are the elements
of Q(n). Using the first equation of (2.35), it is readily shown that the above
square bracket is zero for all (n,w) € R® if

3%] cos{¢) + —— q;; sm(qﬁ) + aai;% + nl:"qﬂ n %Qsz <0,
84':2 cos(d) + 8%2 () — %@_% + nlblcqﬂ + %Eq.rg o,
(5 ) (28 535)
('829%2 %) ("n + nw) {gn +ai2) =0 (2.40)

Using the characteristic method to solve the above partial differential equa-
tions gives a family of solutions

g1 = Cii sin{cAd) + Cyp cos(cAg),

@iz = i {{Cad — Canuz)sin{cAd) ~ (Ca A + Cianz) cos(cAg)) (2.41)

where i = 1,2, nyy = my(m}; — mb)~Vne = ~mpa(m} —miy)"1, 4 =
v n’n —n?,; Ci1 and Ci are arbitrary constants. A choiee of C); = ng =
0, Cy2 = Cz1 = ny results in . .

1 cos(a @) Asin(ade) — nia cos(ad)

QM = | ), sin(ade) —no sin(2A¢) — Acos(ade) (2.42)
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This matyix4s globally invertible and its elements are bounded. Now we write
(2.35) in the {n,-X) cobrdinates as

Y a= I mX

X = =Dy(n)X + QUM 'r (249)

where Dy(n) = Q(n)M1DQ~ (n). It is seen that (2.43) is linear in the
unmeasured states. Indeed a reduced-order observer can be designed but it is
often noise sensitive. We here use the following passive observer:

7= JMQ L)X + Ka(n - i)

b N 2.44
X = —Dy(mR + Q)M-17 + Kogln — ) (2.44)

where % and X are the estimates of n and X, respectively. The observer gain
matrices Ko, and Kpz are chosen such that Qo1 = K& Po1 + PnKo: and
Qoz = DT (n)Poz + PoaDyy(n)} are positive definite and

(JQ ()" Por = PozKoz = 0 (2.45)

with Fp; and Fpa being positive definite matrices. Since D,(n) is positive
definite, Kp; and Ky always exist. From (2.44) and (2.43), we have

= JMQ I MX - Ka#,

X = ~Dy(m)X — Kool (2.46)

where j = n— 4 and X = X — X. It is now seen that (2.46) is globally
exponentially stable by taking the Lyapunov function Vg = #}7 Po1fj+ X7 Py X
whose derivative along the solution of (2.46) and using (2.45) satisfies Vo =
-7 Qp111—~XT Qe X , which in turn implies that there exists a strictly positive
constant og such that

[, X)) < || Kep| e, vizt 20 @47

Define & = [& Qg]T being an estimator of the velocity vector w as

@ =Q (nX. (2.48)
The velocity estimate error vector, & = w — & satisfies

@=Q ' ()X. (2.49)

To prepare for the control design in the next section, we convert the wheel
velocities w1y and wq to the linear, v, and angular, w, velocities of the robot
by the relationship:
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1b

[vw]T =B~ l[wlwz] , with B——[ b

(2.50)
By defining & = v - #, % = w — o with & and @ being estimates of v and w,
we can see from (2.49) and (2.50) that

B, SO < 0 |Gitto), X(t))| e, ezt 20 (251)

where 4 is a positive constant. We now write (2.35) in conjunction with (2.48)
and (2.50) es

& = cos(¢)v + cos(P)¥

¥ = sin($)? + sin(4)o

p=w+& (2.52)
‘é = Tuc + ﬂ,,

b= Tue + 24

-~

where 2, and {2, are the first and second rows of £2:

-1 19-1 a2 N
2=5N8 [} | o4 B1Q keni, M= [ 0] sy

and we have chosen the control torque
r=MB (B"‘NCB [ ] & =-B"M'DRB { ] [T"‘ D (2.54)
t Twe

with 1, and 7. being the new control inputs to be designed in the next
section.

2.2.3 Control design

Similar to the state feedback case, we first interpret the tracking errors as

cos(¢) sm(gﬁ T —-2Xg
- Slﬂ(ﬁﬁ Y~y |- (2.55)
¢ — P

Using (2.55), (2.36) and the kinematic part of (2.52), we have the kinematic
tracking errors:

&, = O = ugcos(de) + ye (0 + B) + 7,
e = g sin(de) — T (1 + @), , .
pe = t — tigg + 0. . . {2.56)

»
Since (2.56) and the last two equations of (2.52) are of the lower.triangular
structure, we use the backstepping technique [12] to design 7, and 7y, in two
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steps. v

Step 1. In this step, we constder ¥ and 1 as the controls. From (2.58),
it is seen that ¢ and @ can be directly used to stabilize . and ¢.-dynamics.
To stabilize y.-dynamics, ¢, can be used when u;q is PE. When uy4 is not
PE (stabilization/regulation case), we need some PE signal in % to stabilize
yve-dynamics via .. With these observations in mind, we define

=10~y =1 Oy, P =~ Cpe (2.57)

where a,, o, and oy, are the v/irtual controls of &, 1 and ¢,, respectively.
From the above discussion, we first choose the virtual controls o, and og.as
Oy = e[y 1o + 14 cO8(e),
Qge = ~ arcsin(k(t)2; 1y, ),
k(1) = Mg + Az cos(Agt) {(2.58)

where 27 = /1 + 22 + y2; ¢; is a positive constant; X;, ¢ = 1,2, 3 are positive
constants such that |k(t)] < k. < 1, Vi. They will be specified later. For
simplification, the virtual control o, does not cancel a known term y .t in the
x.-dynamics. It is of interest to note that the choice of (2.58) will result in
global result and hounded virtual velocity controls.

To design ¢, differentiating ¢, = ¢, — g, along the solution of (2.56)
together with (2.58) yields

be = (1 - k025 '2.) (Qu + B + ) = upg — k23 2 22epe (B + D)+

. 2.59
25! (;rsye + key 27322y, + kuiaf27%(1 + 12) sin(rﬁe)) (2:59)

which suggests that we choose

— 1 _ cade — o=l -3.2
o= 1 ke, ( Jixar T et ke ey +
ka7 (1 +22)sin(6.)) (2.60)

where 22 = /1 + 22 + (1 — k%)y2; c; is a positive constant,

Remark 2.9. From (2.58) and (2.60), the virtual controls o, and o, as a
simple calculation shows, are bounded by some constants depending on the
upper bound of uyy, t14 and uay.

Substituting (2.58) and (2.60) into (2.56) and (2.59) results in
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Eo = —0102 ' T + yelth + B) + T + B,

Pe = -kﬂl_luldye — T (W + ) +
u1402, ! (sin(@.)$2; — (cos(de) — Vkye),

= szg’c -1 _ -
b= = + (1= k02 (04 @)
kST O ey, (0 + ) {2.61)

Step 2. At this step, the control inputs 7, and 7. are designed. We note
that o, is a smooth function of r,, y., ¢. and w114, and that o, is a smooth
function of x, ¥e, Pe. U14, W12, g and f. By differentiating ¢ = % — o, and
1 = 1 — &, along the solution of (2.56) and the last two equations of (2.52),
and noting the last equation of (2.61}, we choose 7, and Ty.8s

N

— ) + “) + %( o —
Toe = Ye) + 55— (W u24) +
3 - 8Ctv N A2 A2
By = (urq8in(d,) — z.D) + By 14 8 (2> + %) o +
k70 2w e ye B,
. oy
Twe = tpd €0S(de) + Yetl) + (W — uag) +

O¢pe

30:1;; . ~ 80'.0 . 3 = 30w
o (u145in(de) — 2.0) + g tiae + 5‘"&:&“” + By

(1 - k82 'z} e — 60 (0% + 07 @ (2.62)

tigg =

where ¢3, ¢4, 8, and &, are positive constants. The terms multiplied by 6,
and §,, are the nonlinear damping terms to overcome the effect of ohserver
errors, see (2.53). The choice of (2.62) ra;ults in

day, . Oa

= —ezb— (yew + &) - 3¢e 1w+ aimetb +
n, -4, ('U + @) o+ k1251027 20, y.0

P - 3aw - - O.'w - 8 .

W= —~cq® — B, (yet + v.) 5¢e + . w+

To analyze the closed loop consisting of (2.61) and (2.63), we first consider
the {¢., 7, 1)-subsystem then move to (., ¥ )-subsystem.

(e, B, W) -subsystem : ) '

For this subsystem, consider the Lyapunov function
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LY

v Vi = 0.5(¢2 + 8% + @) (2.64)

+

whbse derivativg along the solution of the last equation of (2.61) and (2.63)
satisfies

Vi < —cod2/V1+ 8 - cat? ~ e + (xun F xuaWa) e o)
< (x11 Vi + x12) e o0l%0) .

where y11 and 12 are class-K functions of ||(ﬁ(tg).X(£u))||. The second
line of (2.65) implies that Vi{t) < x1a with xia being a class-K function
of ”(ﬁ(tg),)?(to),)?:(cg))" with X(t) = |6e(t) 5(¢) @(t)|”. Substituting this
bound into the first line of (3.65) yields

Vi € —2min (Cz/v 1+ 2x13, ¢3, 64) Vi+ (x11 + xazxas) e %0070 (2.66)

which implies that there exist &) > 0 and a class-K function x; depending
on”(ﬁ(to)‘)? (to), X (to))" such that || X (£} < x1e771¢%), i.e. the (@, b, ¥)-
subsystem is globally asymptotically stable.

(e, Ye }-subsystem

We first prove that the trajectories (x,,y.) are bounded by taking the Lya-
punov function

Vg=\/1+x§+y§—1 (2.67)

whose derivative along the solution of the fivst two equations of (2.61) satisfies

~

Vo € 107202 —~ kuyaf2) Py + xme~ o {tt0)

< Agtirg cos(Agt) 02 2y? + xp e~ 7 (¢t (2.68)

where ag) = min(ag, ) and x2;is a class-K function of ”(ﬁ(tg), X(to), X (1)) ”
Integrating both sides of the second line of {2.68) yields

Va(t) < Va(te) + 2Xaulyd™ + xa1/021 < x22 (2.69)

where u'2* is the upper bound of |u;4(t)|. Therefore, the trajectories (., y. )are
bounded on [0, %0). To prove convergence of (., ye) to zero, we consider each
case of Assumption 2.7.

Cases C1 and C2. From the first line of (2.68) and noting (2.58), we have

Va € =827 222 + |hgurd] + xaa(-)e ™o @), (2.70)
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Integrating both sides of (2.70) and using Barbalat’s lemma, we have

limy_ o 2.{t) = 0. To prove that lim;_, y.(t) = 0, applying Lemma A 27
to the first equation of (2.61) yields:

t]inr}o (yelow +@+@)+T+7) =0 (2.71)

which is equivalent to:
tl_]".[& Z(t)=0 (2.7

where

2) = %) (Hye®)/VTF 0 - BOWO - walt))  (279)

On the other hand from (2.70), we have

~

t
%(va - f |hamg(TY| dr + o5t xar (e < 0 (2.74)
[H]

i
which means that Vi — [ Aou1a(r)| dr+05; x21(-)e =731 (=% is non-increasing.

Since V3 is bounded frc?m below by zere, Va2 tends to a ﬁnit_,e nonnegative con-
stant depending on [| X, (to)]| with X, = (e, e, X, fi(to), X (to)). This implies
that the limit of |y.(¢)| exists and is finite, say {,,. If },, was not zero, there
would exist a sequence of increasing time instants {¢;},2, with ¢; — oo, such
that both of the limits of &(t;) and S(t;) are not zero. With this in mind, if
we choose A; $# 0 and such that

AgAa/ V1 - k2 < pos (2.75)

then under Conditions (2.37), k() and S(t;} cannot be nonzero simultane-
ously for any t,. Hence !, must be zero, which allows us to conclude from
(2.72) that lim;_s ¥e(f) = O,i.e. the (z., . )-subsystem is asymptotically sta-
ble. N

Case C8. In this case, from (2.68), we have

Vs € ~027%(ei? + (udy — dafuial)ad) + xme™ om0 (276)
which means that there exist o3 > 0 and a class-K function x; depending on
||X(tg)|| such that . .

l@e®) i@ S xao ™% - (2
as long as ' A

Mg — douls™ > 3 T (@)
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where u3; ¥ a positive constant. In addition, it can be shown that in this case .
the closed loop-of (2:61) and (2.63) is also locally exponential stable. Under
Assumption 1, there always exist A; such that (2.75) and (2.78). We have thus
proven the following result,

Theorem 2.10. Under Assumption 2.7, the outpul-feedback control laws con-
sisting of (2.54) and {2.62) force the mobile robot {2.35} to globally asymptot-
ically track the virtual vehicle (2.36) if the constanis A, i = 1,2,3 are chosen
such that A; # 0, (2.75) and (2.78) hold.

2.2.4 Simulations ,

The physical parameters are taken from Section 1.3.1, Chapter 1. We perform
two simulations. For the first simulation, the reference velocities are chosen as:
ti1g = 0.5(tanh(ts —£)+ 1), uog = 0, where t, is a positive constant. A switching
combination of a tracking controller and a stabilization one in the literature
cannot be used to fulfill this task if ¢, is unknown in advance. A calculation
shows that for ¢t < ¢,(tracking a curve), condition C3 holds with py; = 0.25
and for ¢t > ¢, (parking) C1 holds. Hence, our proposed controller can be ap-
plied. We also assume that due to some sudden impact at the time ¢, > ¢, the
robot position is perturbed to ¥ = gy, 3¢ 0 to ilustrate the regulation ability
of our proposed controller. For the second simulation, the reference velocities
are u1g = 0, ugg = 0.2, i.e. C2 holds with pop = 0.2. The initial conditions are:
(ﬂTsWT) = ((“2!2! -0.5), (0,0)), (ﬁTl XT) = ((0!0$ 0)' (0,0)), (Id, Yd» ¢d) =
(0,0,0), and we take t, = 20, ¢,, = 30,y = 1.5. The control and ob-
server gains are chosen as ¢; = 2,1 € i< 4,8, =6, =01, Py, = Pz =
diag(1,1}, A1 = Az = 0.5, Az = 0.1, Koy = diag(1,1), Koz = (J()Q ' (n))T.
The above choice satisfies requirements in Theorem 2.10. Results are plotted
in Figures 2.3 and 2.4 (robot position in (x,y) plane). The™racking errors
in the form of /x% + y2 + ¢? are plotted in Figure 2.5. This figure indicates
that convergence of the tracking errors for the case of regulation to zero is
much slower than for the other cases, which is a quite well-known effect when
using the smooth time-varying controllers. Convergence of tracking errors in
the case of C2 is slower than that in the case of C3, since C3 yields local
exponential stability but only asymptotic for C2 (see proof of Theorem 2.10).

2.3 Path following

2.3.1 Problem statement

We consider a mobile robot with two actuated wheels in Chapter 1. For con-
venience, we write the equations of motion here:
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Fig. 2.5. Tracking errors with respect to the first and second simulations.

= J(n)
Lu’; +’(?l"(‘;})w +Dw=r (2.79)

where all the state variables and parameters are defined in Section 1.3.1,
Chapter 1. After an observer and a primary control design as i Section 2.2.2,
we only need to consider the robot model (i.e. the dynamics (2.52)):

z = cos{¢)D + cos{d)0

7 = sin{@) + sin{$)D

$=+d (2.80)
ft= Ty + 2

W = Tye + 2

In this section, we consider a control objective of designing the control vector
T to force the mobile robot to follow a specified path I', see Figure 2.6, If we
are able to drive the robot to follow closely a virtual robot that moves along
the path with a desired speed vp, which is tangential to the path, then the
control objective is fulfilled, i.e. the robot is in a tube of nonzero diameter
centered on the reference path and moves along the specified path at the speed
tp. Roughly speaking, the approach is to steer the robot such that it heads to
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the virtual and eliminates the distance between itself and the virtual robot.
We define the following variables to mathematically formulate the control

v A

Fig. 2.6. General framework of mobile robot path following.

ohjective:
LTe =2Zg — T,
Ye = Y2 — &, 1
Be = b du, (281)
o= VETH
where .
$a = arcsin(ye/7,). (2.82)

Control objective: Under Assumption 2.11, design the controls v, and
T2 to force the mobile robot {2.80) to follow the path I" given by

' xq = v4(8),
¥ = ya(8) (2.83)

where g is the path parameter variable, such that

lim zc(t) S 23, »
t—oo L
Jim e =0 - @8

with £, being arbitrarily a small positive constant.
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-

Assumption 2.11 a) The reference path is regular, i.e. there exist positive
constants Ry and Rpa, such that

. 2 2
0 < Rumin < (aﬁ) + (%) < Rumax < 00.
Js 3s

b} The minimum radius of the osculating circle of the path is larger than
or egual to the minimum possible turning radius of the robot.

Remark 2.12. a) Assumption 2.11 ensures that the path is feasible for the
robot to follow. -

b) If the reference path is not.regular, then we can often split it into regular
pieces and consider each of them separately.

¢) The path parameter, §, isaot the arclength of the path in general. For
example, a circle with radii of R centered at the origin can be described as
x4 = Rcos(s), yg = Rsin(s), see [13] for more details.

If one differentiates both sides of ¢, = ¢ — ¢4 to get the $e-dynamics, there
will be discontinnity in the ¢.-dynamics when ., changes its sign. This dis-
continuity will cause difficulties in applying the backstepping technique. To
get around this problem, we compute ¢.-dynamics based on

e sin{¢) — y. cos(d)

sin(¢,) = . ,
cosp) = TS+ vesnls) 25

‘We now use (2.81) and (2.85} to transform (2.81) to

s - TeO2d | yeOya\ , - -
fe = = cos(¢e )0 + (Ze 5 o s ) 3 — cos(ge),

P ((sinw) = sin(@)) dzy (cos(m L e sin((f'e)) 3_!15) .

2z, 23 Bs Ze z2 3s
8 Sin(¢’e) - ~ -
+ v+ v+ w,
cos(d.) Ze ( )
= Toe+ 20,
W= Twe + 2w (286)

It is noted that (2.85) is not defined at z, = 0. However, our controller will
guarantee that z,(t) = 27 > 0, Y0 £ ¢ < oo for feasible initial conditions.
The second equation of (2.86) is not defined at ¢.() = +0.57 but we will
design § to overcome this problem. Therefore, we will design the controls
Tye and Ty, for (2.86) to yield the control objective. In the next section, a
procedure to design a stabilizer for the path following error system (2.86) is
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presented in details. The triangular structure of (2.86) suggests us to design
the controls 7. and 7. in two stages. First, we design the virtual velocity
controls for & and ¥ and choose § to ulthmately stabilize 2z, and ¢. at the
origin. Based on the backstepping technique, the controls 7, and 7. will be
then designed.

2.3.2 Control design

Step 1. The z, and ¢, dynamics have three inputs that can be chosen to
stabilize z, and ¢, namely ¢, ¢ and @. The input % should be designed to
stabilize the ¢, dynamics at the origin. Therefore, two inputs, § and ¥, can be
used to ultimately stabilize z, at the origin. We can either choose the input ¢
and & and then design the remaining input. If we fix 4, then the virtual robot
is allowed ko move at a desired speed. The real robot will follow the virtual
one on the path by the controller, and vice verse. We here choose to fix 4.
This allows us to adjust the initial conditions in most cases without moving
the robot. Since the transformed system (2.86) is not defined at z, = 0, we
first assume in the following that 2.(t) > 22 > 0,¥ 0 < ¢ < co. We will then,
show that there exist initial conditions such that this hypothesis holds.
Define o

Ve =Y~ U, (2.87)
We = W — ty
where ©, and . are the virtual controls of ¢ and @, respectively. As discussed
above, we choose the virtual controis and 3 as follows:

O = ky(ze — 8.} + (”e dx4 4+ ¥ Ye Dya volt, z)

8s 2z 33)\/(81) . %u) )
R (CCREL 21 (cosw) \ tsile)) o)

2 " z
z2 ds Ze 22 Os

wltz) _sinfdl), ‘o (smwe)) "

OO ‘

008(¢e)”0 t, ze)

\/ (8.1.' ) + )
where & > 0, k3 > 0, §; > 0. The term multiplied by 4, is a nonlinear
damping term to overcome the observer error effect. vp(t, z,) # 0, ¥t & ¢ >
0, z. € R, is the speed of the virtual robot on the path. Indeed, one can choose
this speed to be a constant. However, the time-varying speed and posttion
path following dependence of the virtual r‘obot on the path is more desirable,

(2.88)



36 2 Control of Single Mobilé'Robots

especmlly wien the robot starts to follow the path. For example, one might
choose

. vo(t 2¢) = v(1 — yae X2l to)jeXa% (2.89)

where v # 0, x; > 0,7 =1,2,3, x1 < 1. The choice of v(t, 2.} in (2.89) has
the following desired feature: when the path following error, z., is large, the
virtual robot will wait for the real one; when z. is small, the virtual robot
will move along the path at the speed closed to v§ and the real one follows it
within the specified look ahead distance. This feature is suitable in practice
because it avoids using a high gain control for large signal z.. Substituting
(2.88) into the first two equations of (2.86) results in

hem —hy cos(de)(ze — Be) — cos(Be) (B + ),

e = —kope — &1 (sm(é, ) Pe + Sm(%) ——— T+ v, ) + 1+ w,. (2.90)

Step 2. By noting that the virtual control 4, is a function of ¢, z., %, and
s, and the virtual control w, is a function of ¢, ., y., s and ¢, differentiating
both sides of (2.87) along the solution of the last two equations of (2.86) results
in

[m] _ [m+rz., ] + [g%m(énggfsinm)ﬁ ] ]

e ] | Twet 2w §x cos(4) + Zee sin(9)) - Y
%ﬁf + g%f (%’i‘é — dcos(g)) + gﬁ:— (%‘}é - t‘)sin(cﬁ)) + G
B + 52 (355 ~ toos(9)) + 325 (s - dsin(e)) + 9rs + Yo
(2.91)

From (2.90) and (2.91), we choose the control vector without canceling
the useful damping terms and with nonlinear damping terms tovovercome the
observer error effect as follows:

+

Twe

. , (a: cos(¢) + g—qﬁsin(r,b))zvg

[uc]z_[?l e]__az ) - ’ Ye 2 .2
20, (3= cos(g) + G sin4)) we + ()

[ %4_%&(az.é_ﬁm(¢)+%n(%!¢é—ﬁsin(¢))+%‘2=é ]

B +%%:(8x é — tcos(d)) (%us—vsm(q&)+ s+%’%ﬂw
sl

where ¢33, 2, 62 and 83 are positive constants. The terms multiplied by &2
and §3 are the nonlinear damping terms to overcome the observer error effect.
Substituting (2.92) into (2.91) results in
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] (32 [2]-s[6:22]- (%)
(g?ﬁi cos(¢) + 5= sin(¢)) o
{(%{‘ cos(¢) + G 3in(¢)) 5 — 2 ﬁ]} -
(88 cost0) + Bz snia)

% (‘3—“’-“- cos(¢) + a—‘i’*‘-sm(qb)) We + (—%‘-)

(2.93)
2.3.3 Stability analysis

To analyze the closed loop system consisting of (2.90) and (2.93), we first
consider the (¢., v, w,)-subsystem, then move to the z,-dynamics.

{¢he, Ve, e )-subsystem

For this subsystem, we take the following Lyapunov function
1
Vi =3 (e + v +ud) (2.94)

whose the derivative along the solution of the last equation of (2.90) and
{2.93), after some manipulation, satisfies

Vi € —;Vi +xa(c)emoolt=%) (2.95)
where p; is a positive constant and can be made arbitrarily large by increas-

ing the design constants ki, kg, 21 and eg0. x1() is a class-K function of
" (z,(to), delto), i{to), X’(tg)) " From (2.95), it is not hard to show that

(e (1), vet). weDl < an(Je= ) (2.96)

where a;(} is,a class-K function of ” (zg(to).qﬁc(tg).ﬁ(to),X’(tU)) ", and oy

is a positive constant. Hence (2.96) implies that the (¢, v,, w,)-subsystem is
K-exponetitial stable at the origin,

ze~dynamics
-Lower-bound of z.. Defining Z, = 2. — &, the first equation of (2. 90) can
be written as A
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< z
[ Ze

-k COS(@e)ze - COS(d)e)(‘f? -+ ”e)
2 —kZ, — 15 + 'Uei
> —k1Z. — ag{-)e??t %) (2.97)

where a2(-) is a class-K function of {|(z(t0), ¢ (t0}, fi(t0), X'(to})ll, and oo
is a positive constant. From (2.97) and comparison principle, we have

3 3 ~ki(t—io} _%_).._ —a2{t—tq) _ ,—k1(f—20)
Ze(t) = Z.(tg)e + p— (e e ) ; {2.98)

»

Therefore the condition z ()} > z; holds if

20 22 (2.99)

. o
k1, > 24,
oy > k1, ze(bo) 2 et oo — k1

-Upper-bound of z,. To estimate upper-bound of z,., we write the first
equation of (2.90) as

£e = —kyz. — ki(cos{d.) — 1)ze + k) cos(¢e)be — cos(e ) (D + v} (2.100)

By taking the Lyapunov function V5 = 0.523 and noting that ¢., v. and
# exponentially converge to zero, it is not hard to show that

|ze(£)] < ag(-)e™o3( 1) 4 g (2.101)

where a3(-) is a class-K function of [(z.(t0), ¢ (to), ii(to), f({to})ﬂ, and o and
p3 are positive constants. The constant pg can be made arbitrarily small by
reducing .. -

el

2.3.4 Simulations

To illustrate the effectiveness of the proposed output-feedback path following
controller, we perform a numerical simulation. The physical parameters are
taken from Section 1.3.1, Chapter 1. The observer gains are chosen the same
as in Section 2.2.4. The design constants are: £} = 0.5; ke = 5; €31 = €22 =
2 6 = 82 = 8 = 0.05; 8, = 0.2. The initial conditions are: (n",w’) =
{(=5,0,0.5},(0,1)), (#7,XT) = ((0,0,0),(0,0)}, s(0) = 0. The reference
speed of the virtual mobile robot is g = 5m / s. The path I is chosen to be a
sinusoidal path specified by x4 = 8, yg = 10sin(0.15s). This path is regular and
satisfies all requirements in Assumption 2.11. Simlation results are plotted
in Figure 2.7. From this figure, it can be clearly seen that the output-feedback
proposed controller is able to foree the mobile robot in question to follow the
reference path nicely.
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Fig. 2.7. Robot position and orientation in (r,y) plane (top); Control torques
{bottom).

2.4 Notes and references

The main difficulty with solving stabilization-and tracking control of mobile
robots is due to the fact that the motion of the systems in question to be con-.
trolled has more degrees of freedom than ‘the number of contro) inputs under
nonholonomic constraints. Brockett’s theorem [4] shows that any continuous
time invariant feedback control law does not make the null solution of the
wheeled mobile robots asymptotically stable. Over the last decade, a lot of in-
terest has been devoted to stabilization and tracking control of nonholonomic
mechanical systems including wheeled mobile robots {14], [15], [1], [16], [17]
to list a few. Tracking and stabilization are studied separately in these works.
In (18], the problem of simultaneous stabilization and tracking was posed and
solved for the first time. The control design is based on a specua.l time-varying
coordinate transformation, Lyapunov's direct methdd, and the backstepping
technique. »

»
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Output-fe¥dback tracking control of land, air, and sea vehicles has been
solved for the case of fully actuated {17], pp. 311-334. The main difficulty with
designing an obsewver-based output feedback for Lagrange systems in general
is because of the Coriclis matrix, which results in quadratic cross terms of
unmeasured velocities. In addition, nonholonomic constraints of mobile robots
make the output-feedback problem challenging. For example, many solutions
proposed for robot manipulator control ([17] and references therein) cannot
directly be applied. Recently, output-feedback tracking of mobile robots was
solved in [16). In this work, based on a special coordinate transformation the
exponential observer is designed to estimate the robot velocities. The control
design is then based on the time yarying coordinate transformation in [18],
and the popular backstepping technique [12]. Some other results on output-
feedback control of the single-DOE Lagrange systems were addressed in [19)
(high-gain control), [11], and [20] for a nonlinear benchmark system. The
materials presented in this chapter based on [18], [16], and [21].

Based on the material in this chapter, several control systems developed
for stabilization, tracking control and path following of ocean vehicles, which
possess second order nonholonomic constraints, and Lemma A.11 are given
in [22], [23], [24), [25], [26], [27), [27], [28], [28], [29]. In these papers, both
state feedback and output feedback are addressed. A global tracking control
solution for a vertical take-off and landing (VTOLY} aircraft is given in [30].

It should be alko mentioned that all proofs of the main results in this
chapter are based on Lyapunov’s direct method for the sake of self-containing.
Indeed, one can use the stability result for cascade systems given in Appendix
A, Section A,1.3 to analyze stability of the closed loop systems. Moreover,
if nonlinear damping terms are considered in the robot dynamics, Lemma
A.10 can be used with the proposed coordinate transformation to design an
exponential /asymptotic observer.

e



3

Relative Formation Control of Mobile Robots

In this chapter, a constructive method is presented to design cooperative con-
trollers that force a group of N mobile agents to achieve a particular formation
in terms of shape and orientation while avoiding collisions between themselves.
The control development is based on new local potential functions, which at-
tain the minimum value when the desired formation is achieved, and are equal
to infinity when a collision occurs. The proposed controller development is
then extended to formation control of a group of unicycle-type mobile robots.

3.1 Departure example

3.1.1 Problem statement

To illustrate our approach, we start with a si;'nple example of a group of two
. mobile agents. The results for this system will subsequently be extended to
the more complicated case with N agents. Considex two mobile agents whose
dynamics are given by

. (j,' =1u; (31)

where g; = [r; ¥)7 € R? and u; = [u;x uy)7 € R?, i = 1,2 are the states and
control inputs of each agent. The control objective is to design the controls u;
such that they force the agents to move in formation from initial conditions
qi(to), to = 0 with ||g1{te) — gz{t0}|| > O, where || || denotes the standard
Euclidian norm of e, in the sense that: ! .

1} the agents move in a desired formation: Hmy—oo ||g1(2) —82(2) — {12l =0
where {12 = [lz12 {;12]7 with [|l12]| > 0 is desired distance between’the agents,
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2) no callisions between the agents occur: j|q1(8)—g2(t)l| > 0, V¢ >t > 0,
and . -

+
3) the agents’ velocity converges to the desired (bounded) velocity ug =
[udz udy]T: limt—oo(ui(t) - U'd) =
3.1.2 Contro] design
Consider the following potential function
p="7+488 (3.2)

where & is a positive tuning constant, 4 and g are the goal and related collision
avoidance functions, respecfively. They are specified below:

-

-The goal function ¥ is designed such that it puts penalty on the stabiliza-
tion error, and is equal to zero when the agents move in the desired formation.
A simple choice of this function is

1
¥= §||§’1 - g2 = 2% (3.3)

~The related collision avoidance function 3 is designed such that it is equal
to infinity a collision occurs, and attains the minimum value when the agents
move in the desired formation. A possible choice of this function is

a@u
= 3.4
h ﬂm ;312 84)
where
Bz = 0.5]lq1 — o|*, e
Brat = 0.5|512| > (3.5)

To design the controls u; = [u; w,)7, differentiating both sides of (3.2) along
the solutions of (3.1) gives

@ = fhortie — v2x) + 12y (Ury — u2y)
= Q{12 — Uae — (U2 — Udz)) +
me(uly = Udy — (u2y - Udy)) (36)

where
fhor =21~ 22 — l1a] + [5( ) (1 - xz)] s
:2! 12

gy = [n — 2 ~ fp2] + [ ( 7~ ) { — yz)] . (3.7

12t
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The equation (3.6) suggests that we choose the controls u; = [uy usy|7 as

{ul:c = —ef2; + Uds {u% = cf9; + Ude

U1y = _C-QlZy + Uy a2y = C-Qle + tdy (38)

where ¢ is a positive constant. Substituting (3.8) into (3.6} yields
¢ = 20y, + Ohy). (3.9)
Indeed, substituting (3.8) into (3.1) results in the closed loop system

g1 = —cffo + ug

go = ez + ug (3.10)

where (213 = {{12, $h2y)7.

Remark 3.1. The control pairs (uyz, tup;) and (uyy, gy} have a special feature
in the sense™that the first terms (see first square brackets in {212, and $242,)
play the role of driving the agents to their desired locations while the second
terms (see second square brackets in 212, and (212,) take care of collision
avoidance between the agents, see (3.7). The second terms act as gyroscepic
forces to steer the agents away from each other when they come close to each
other. Morecover, the first terms in the above control pairs provide the “at-
tractive forces” that attract the agents to their desired locations. The second
terms provide both “attractive and repulsive forces”. These forces attract the
agents to their desired distance and push the agents away when the agents
are too close to each other.

3.1.3 Stability analysis

In this subsection, we show that the controls u; = {u;; u;,|7 given in (3.8)
guarantees that no collisions can occur, the solutions of the closed loop system
{3.10) exist, the desired formation is asymptotically achieved, and the agents
will move with the desired formation velocity 1.

-Proof of no collisions and existence of solutions.
From (3.9), we have ¢ < 0. Integrating both sides of this inequality gives

ﬁlgft) 1 ﬁl?(t(’) 1
7(t)+6( z, + ﬁlz(t)) ST(“’)M(T@, + ﬁaz(to))' vt > toglﬂl)

where

¥(t} = 0.5)lq1(t) — @2(t) — Lialf?, .

7¥(te) = 0.5{|q1 (to) — galte) — biafl®, - '
Bra(t) = 0.5lqu (1) — q2(8)|}2, a

Br2(to) = 0.5|lg1(to) - q2(to)|I. T (312)
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Since |lg1(tg) — g2{to)|] > 0 and [|}12]] > O, i.e. Bi2(te) > 0 and By > O,
the right hand side of (3.11) is bounded. As a result, the left hand side of
(3.11) must also be bounded. This means that 82(2) > 0, V£ > £ 2 0, ie. no
collision between the agents can occur. To show that the solutions of the closed
loop system (3.10) exist, we consider the function Vip = 0.5(|[q1]|% + ||g2l}?)
whose derivative along the solutions of the closed loop system (3.10) satisfies
Viz < (a1/8%, + a2)Vi2 + a3 where a1, ag and as are some positive constants.
This implies that the solutions of the closed loop system (3.}0) since B12(t) >
0, ¥t > tg = 0. Furthermore, applying Barbalat’s lemma, see Lemma A.6, to
(3.9) gives

lim 912 = 0. (313}
oo

-Behavior near equilibrium points. Since the desired formation is specified
in terms of relative distance Between the agents, we will consider the dynamics
of inter-agents instead of each agent. Defining 12 = g — g2 and differentiating
this equation along the solutions of the closed loop system (3.10) yield

1z = —2cf25 (3.14)

where 21, is given just below equation (3.10). We can write £2y2 as a vector
function of gr2and ly2 as 212 = qra—li2+6 (1/85y — 1/6%) q12. At the steady
state, we have {212 = 0. The equation {212 = 0 has two roots ¢, = {12 and
f12 = q120» Q12c = [T12¢ Y12c|7. Therefore (3.13) implies that g2 approaches
either [1o or g12.-

It is noted that )2 has a property that the term ¢35 Iy is strictly negative,
i.e. the point at which (212, 112) = (0, 0} locates between the equilibrium point
(212¢, 3n12c) and the equilibrium point (I;12,4,12). This is due to the fact that
at the equilibrium point (.12,l12) all the attractive and repulsive forces are
equal to zero while at the critical point (%120, 12c) the sum of ttractive and
repulsive forces (but they are different from zero) is equal to zero. This can
be viewed graphically in Figure 3.1.

In the rest of this section, we will show that the equilibrium point
(Iz12, 412} is asymptotically stable while the equilibrium point (z13¢, $12¢) is
saddle. The general gradient of £212(q12, {12) with respect to gy is given by

2
812 1+6 (3%— - g’r) + 25%% ‘25?1’2: *

- 12 12 (315)
) 2zpaing 1 261;,2
QIz '612 1+6(’812t 1612) +
To show that the equilibrium point {:12,{,12) is asymptotically stable, we
need to show that the matrix Ay, = %§1;| s positive definite. Substi-
fia=irz

tuting ¢z = {2 into {3.15)} yields
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Fig. 3.1. Illustrating location of equilibrium points.

hy = 280212819 A543 (3.16)

_..%3_x_ 1+_'63w_11

2

283, 2leizlig
1 + 12 1 ] .
12
Since 1 + 26{2,,/85,; > 0 and det(As,) = 1 + 26/8%,, > 0 where det(s)
denotes the determinant of e, the matrix A4;,, is positive definite, i.e. the

equilibrium point ({212,412} is asymptotically stable. On the other hand at
the equilibrium point (z12., y12.), we have

filrs
s

=[1+5(§;---5,1-)+2‘§in

l‘zé‘s:I= 12 13c
B 28y (3.17)

Hige A4
1 26y3 ] = Agise
1+6 (,ﬁg ~ 5+

13 12c

Tra=q12c

where B12. = 0.5(g12¢]|2. The determinant of the matrix A4,,,, is given by

i1 1, 3
={1+6( = - o —}. :
caiann = (140 (- 7)) (o (g +ap) ). o

Since at the equilibrium point (x)2., 112:), we have )5, = 0 where 243, is
215 being evaluated at q1a = 13, Multiplying both sideg® of {25, = 0 with
4f3c, we have gl fh2c = 0. Expanding ¢,z = 0 gives -

L

1 l“
6 (183 - }/ﬁfzc) = _mqg;c(m% - hiz). o (3.19)
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Su‘bst,ituting (3.19) into (3.18) yields

ool
det(Ag) = T (146 (/8 +3/8%)) (3:20)

Since ¢locl12 is strictly negative, we have det(A,,,.) < 0, which implies
that the equilibrium point (2., y12.) is saddle.

25

1.5¢

Lod
n

Agent 1

|
=
[+

X

Fig. 3.2. Agents’ motion in (x,y) plane.

3.1.4 Simulations

We now illustrate the result of the previous subsection by running a simulation
with i =[1 ~ 1), c=1, § = 0.2, ug = [10.5]7. For this set of numerical
values, the equilibrium points of the agents’ inter-dynamics are ({12, l12) =
(1,-1) and (212¢,12¢) = (—0.5,0.5). Indeed, it is true that ¢, ha = -1
which is strictly negative. The agents are initialized randomly in a circle with
radius of 0.1 centered at the origin, The agents’ motions in the (z, y) plane are
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Fig. 3.3. Controls and distance between agents.
s

ploited in Figure 3.2. Figure 3.3 plots the controls and distance between the
agents, d1p = ||q1 — q2|]. Clearly, there are no collisions since d;3 always larger
than zero. In addition, the agents’ velocities converge to the desired velocity
t4. The phase portraits of the inter-agent dynainics are plotted in Figure 3.4.
It i3 observed from Figure 3.4 that the goa) point (1412, l,12) is the attractive
point (arrows go to this point) and that at this point all the attractive and
repulsive forces are zero. The zero point (0,0} is repulsive point {arrows go
out from this point). At the saddle point (x12c, yi2¢), Sum of attractive and
repulsive forces is equal to zero (some arrows go in and some arrows go out).

3.2 Formation control of N agents

In this section, we generalize the results for the simple system in the previous
section to a more complex system of N maobile agents. Al
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Fig. 3.4. Phase portraits of inter-agent dynamics.

3.2.1 Problem statement

We consider a group of N simple point-mass mobile robots, of which each has
the following dynamics
t‘;’,' = Wi, i= 1,...,N (321)

where ¢; € R™ and u; € R™ are the state and control input of the robot i.
We assume that n > 1 and N > 1. The assumption that each robot is rep-
resented as a point is not as restrictive as it may seem since various shapes
can be mapped to single points through s series of transformations [31], [32],
[33]. Our task is to design the control input u; for each robot ¢ that forces
the group of N robots to stabilize with respect to their group members in
configurations that make a particular formation specified by a desired vector
i{n) = (ify0n), Ba(n), ... 1%y v (m}7, where n € R™ is the formation parame-
ter vector to specify the formation change, while avoiding collisions between
themselves. The parameter vector 5 is used to specify rotation, expansion and
contraction of the formation such that when 5 converges to its desired value
11y, the desired shape of the formation is achieved. In addition, it requires all
the robots align their velocity vectors to a desired bounded one u;z € R®, and
move toward specified directions specified by the desired formation velocity
vector. The control objective is formally stated as follows:

Control objective: Assume that at the initial time ¢p each robot initial-
izes at a different location, and that each robot has a different desired location,
i.e. there exist strictly positive constants £q, €2 and g3 such that
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s {to) — g5{ta}l] 2 €1,
iz (il > e2, (3.22)
18L:5(n)/mll < es, Vi, j € {1,2,..N}, Vg€ R™.

Design the control input w; for each robot ¢ , and an update law for the for-
mation parameter vector n such that each robot (almost) globally asymptoti-
cally approaches its desired location to form a desired formation, and that the
robots’ velocity converges to the desired {bounded) velocity 1y while avoiding
collisions with all other robots in the group, i.e.

iimt—'wgqi{(t)} ~ qj)(t) B‘ij(ﬂ(t))) =0,

imyo(m{t) —ns) =0,

limg_.oo (ui(t’) - id) = 0‘ (3'23)
HQt(t) - QJ(t)” > £yq, VZ, J € {1.2,N}, vt 2 ‘0 Z G

~

where g4 is a strictly positive constant, and 5y is a vector of constants that
determine the desired formation. The desired formation can be represented
by a labeled directed graph {[34], [35]) in the following definition,

Definition 3.2. The formation graph, G = {V,E,L} is a directed labeled
graph consisting of:

-g set of vertices (nodes), V = {9),--- ,9x)} indexed by the mobile robots
in the group,

-a set of edges, E = {(9;,9;) € V XV}, containing ordered pairs of vertices
that represent inter-robot position constraints, and

-a set of labels, L = {’}','j]‘)&'j = llg; - g — lu‘llz. Y(9:.9,) € E}, lij =
gif — @i7 € R® indexed by the edges in E.

Indeed, when the control objective is achieved, the edge labels become [lg; —
gj —l,ijz =0, V(9:,9;) € E, i.e. the relative distance between the robots i end
jisty. *

3.2,2 Control design

o

We consider the following local potential function »

. @i =y + 66; (3.24)

where § are positive tuning constants, the functions 4; and 8; are the goal
and related collision avoidance functions for the robot ¢ specified as fellows:

-The goal function -; is essentially the sum of all distances from the robot
i to its adjacent group members, N;. A simple choice of this function ¥
1 A
T = Z Vi, Vg = §||Qs - g5 ~ 1) . (3.25)
JEN; 1.
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-The related collision function 5; should be chosen such that it is equal to
infinity whenever any robots come in contact with the robot 4, i.e. a collision
otcurs, and attains the minimum value when the robot i is at its desired
location with respect to other group members belong to N;, which are adjacent
to the robot #. This function is chosen as follows:

i
Bi=)_ ( 7 + ‘J) (3.26)

JEN;

where k is a positive constant to be chosen later, 8;; and 8, are collision
and desired collision Tunctions chosen as

1.7 ]
B = §||Qs - gl Bt = §1|fej||2- {3.27)

1t is noted from (3.27) tha{ﬁij = B and Bi; = Bju.

Remark 3.3. 1) The above choice of the potential function : given in (3.24)
with its components specified in (3.25)-(3.26), has the following properties: 1)
it attains the minimum value when the robot 7 is at the desired location with
respect to other group member belong to Ny, which are adjacent to the robot
i,ie ¢ —¢q; —l;; =0, j € N;, and 2) it is equal to infinity whenever one or
more robots come in contact with the robot i, i.e. when a collision occurs.

2} The potential function (3.24) is different from the ones proposed in [36]
and [37] in the sense that the ones in {36] and [37] are centralized and do not
put penalty on the relative distance between the robots, i.e. do not include
the goal function <. Therefore, the controllers developed in [36] and [37] do
not guarantee the formation converge to a specified configuration but to any
configurations that locally minimize the potential functions {these potential
functions in [36] and |37] are nonconvex).

3) Our potential function (3.24} is also different from the navigation func-
tions proposed in [31} and [34] in the sense that our potential function is of the
form of sum of collision avoidance functions while those navigation functions
in [31] and [34] are of the form of product of collision avoidance functions .
This feature makes our potential function " more decentralized”. Furthermore,
our potential function is equal to infinity while those in [36], [31] and [34] is
equal to a finite constant when a collision occurs. However, those in [31] and
[34] also cover obstacle and work space boundary avoidance, Although these
issues are not included in this paper for clarity, considering these issues is
possible and is the subject of future work.

4) Our potential function does not have problems like local minima and
non-reachable goal as listed in [38].
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To design the control input u;, we differentiate both sides of (3.24) along
the solutions of {3.21) to obtain

E (927 (us — uy) — ¥ 15A]
Z { 5 — ug — (45 — wq)) — &5 (3.28)

JEN;

= 3 Qf(wi~va) - ¥ Qh(u~w)~ 3 ¥En
FEN; FEN; JEN;
where

nij =g; - q; - I:} +5k ( ‘ : E:%E) 5:;_1((1& - Q_?)

T 17 (3.29)
26k4%, Ay
'I/ij - [(q‘ 4= bt B¢ 1!”) on } .

u

From (3.28), we simply choose the control u; for the robot i and the update
law for n as follows:

u,—=—CZ 25+ ug

JEN
n=—I(n-ny) (3.30)

where C € R}*" and I' € RT™™ are symmetric positive definite matrices.
Substituting (3.30) into (3.28) yields

pi=—> 05CS 05-3 0w —ua)+ > FEL(n—np)(3.31)

FEN; jeNi JEN; JEN;

Substituting (3.30) into (3.21) resaits in the closed loop system

gi =-C z Q,'j +uq, t=1,.,N. (332)
JeN: ’

Since the desired formation is specified in terms on relative distances be-
tween the robots, we write the closed loop system of phe inter-robot dynamics
from the clased loop system (3.32) as

Q"U' = —C (E Qja - Z ij) H (?';J) € {1"“?N}! '&?":j (333)

GENi bENJ'

where g;; = ¢; —¢;. We now state the main result in the following theorem.

»
[

Theorem 3.4 Under the assumptions stated in the control objective, the con-
trol for each robot i given in (3.30) with an appropriate choicé of the tuning
constants § and k, solves the control objectwe
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3.2.3 Prdof of Theorem 3.4

We prove Theorem 3.4 in two steps. At the first step, we show that there
are no collisions between any robots and the solutions of the closed loop sys-
tem exist. At the second step, we prove that the equilibrium point of the
inter-robet dynamics closed loop system (3.33), at which ¢; —¢; — {i; =0, is
asymptotically stable. Finally, we show that all other equilibrium(s) of (3.33)
are either unstable or saddle.

:

Step I: Proof of no collision and existence of solutions
We consider the following common potential function ¢ given by
e .

N
Toee=)u (3.34)
i=1

whose derivative along the solutions of (3.31) is
N N
-y Yafey a,-Y Y 2 u¢)+z >, YErt —ny).
i=1jeN; JEN; i=1 jEN; i=1 jEN,
(3.35)

Since I;j = —lﬁ and \Qij = '-.ng, we have

N N
YN QR -y == > s —ua). (3.36)

i=1 JEN, i=1 FEN;

Substituting (3.36) into (3.35) gives

-

= _22 Z re Z 2 +Z Z wIr(n- n;i. (3.37)

i=1 jEN, FEN; i=1 jeN;

We now consider the following total function ¢ = log{l + ¢) + 0.5)|n -
n¢j[* whose derivative along the solutions of {3.37) the second equation of
(3.30) satisfies

Ptor = —mzz CZij+

i=1 jEN, FEN:
1+o Z S wIrtm-ng)-m-np) Tn—ny) (338)
t—l JEN;

which implies that
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. QD) || r ’
(Ptat BT Z: Z C Z Q‘J + o= 45(1 + )2 Z Z wij -
st FEN; JEN; =1 jEN;
(AminlT) = EAmax(M))|n — 0l (3.39)

where £ is a positive constant, Amia() and Agax(I"} denote the minimum
and maximum eigenvalues of I' respectively. From (3.29), and definition of
the function ¢, it can be readily shown that there exists a positive constant

@Wmnax such that )

Sy

i=1 jeN;

< Wmax (3.40)

1+ so)’*’
With (3.40) in mind, picking ¢ = Amin(7}/ Amax (") we can write (3.39) as

m&x(j ) 4
L L1 L A
Prot < 3y ln(F) Wmax = Wmax- (3-41)

Integrating both sides of (3.41) results in

Prot(t) < Prot(to) + Tmax(t — fo). (3.42)

where @ (t) and iae(te) are (from the definition of i)

Prot(t) = log [1 + % ('vs(t) +5 3 (B—g‘r{kﬂ + ﬁ))] + 3lin(e) = nylf
i=1 FEN; idi s

FEN; B

3.43
poto) = log |1+ & {wta) 45 % (%l + 1,%7;))}+ (349
§lin(to) — nrll®.

-

The right hand side of (3.42) cannot escape to infinity unless when ¢ = oo
since Gyt > 0 and Bi;(ty) > 0 (see definition of B and By, given in (3.27)).
Therefore the left hand side of (3.42) cannot escape to infinity for all £ €
[to,o0). This implies that 8;(t) cannot be zero for all ¢ € [tp,00), i.e. no
collisions can gecur for all ¢ € [fg, 00). On the other hand, it is true from the
second equation of (3.30) that

() = n51) < |[n(to) — nylle AmintPIEt0) (3.44)

which means that the desired formation shape is achieved egponentially. Usmg
(3.40) and (3.44), we can write (3.39) as

Prot S )‘max(r)v "-'-’max“'?(tﬂ) - ’U”e—‘\mm(r}(i"to)_,h (3-45)

Integrating both sides of (3.45) from tg to ¢ results in
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Proelt) < Pear(to) + Amme D)malintto) = nl/ MminlD). (3.46)

It is seen that ¢he right hand side of {3.46) is bounded. Therefore the left
hand side of (3.46) must also be bounded. This implies that B;;(t) must be
larger than a strictly positive constant for all ¢ € [tg, 00), which in turn means
that there exists a strictly positive constant 24 such that the last inequality
of (3.23) aolds. To prove that the solutions of the closed loop system (3.32)

N
exist, we consider the function W = 0.5 3" ||g(|* whose dérivative along the
i=1

solutions of (3.32), alter some simple manipulation, satisfies W < o1l +
1/ min{0;;)}W + p2 , where py and py are some positive constants, which
implies that the solutmns of {3.32) exist since (3;;{¢) is larger than a strictly
positive constant for all ¢ € [tn‘oo) Furthermore, applying Barbalat’s lemma,
see Lemma A.6, to (3.39) gives

dm (p(t) Z Z TOC Y 25(t) =0 ' (3.47)

i=1 jEN; JjenN;

which implies that
{limt_.w Z Qij (t] =0 { limt_.m Z Qﬁj(t) = X2
or

. JEN, _ iEw (3.48)
lim¢— o0 2(t) = X2 lim;—eo (1) = 00

where x; and x2 are some constants. From definitions of £2;; and ¢, the sec-
ond limit set in (3.48) cannot be true. Therefore, the first limit set in (3.48)

implies that lim;_ o E 2:5(¢) = 0.
JeN,

Step 2: Behavior near equilibrium points
At the steady state, the equilibrium points are found by solving the fol-
lowing equations

Z D= (qu ~ b + 6k ( . ) B ) =0 (3.49)
FEN: JEN: ﬂul ’6‘.?

for all ¢ = 1,..,N. It is directly verified that § = [ where § and are
stack vectors of g;; and I, respectively, ie. § = {gfs. ql3....a%_; x|7 and
U= (15,15 i%_y &]T, is one root of (3.49). In addition there is (are) an-
other root(s) denoted by §. = [¢]2. ¢Tac-» qh_y.nve)T Of (3.49) different from
I satisfying

Z Qs'j = Z (ch I‘c_‘,l + 8k ( 2k ) ﬁ:;cl%;c) =0 (3 50)
B2 G

FEN; . jEN; tje
=qC
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for all i = 1,..., N, where Bij. = 0.5]|gic — gjcl|*. In the following, we will show
that the equilibrium point § = { is asymptotically stable, and the equilibrium
point(s) § = §. is (are) unstable or saddle. We now write the closed loop
system of the inter-robot dynamics (3.33) as

¢ =-CF{g,1). (3.51)
where C = diag(C, -+ - , C) with E the number of edges of the formation graph,
E
and
Fah= Y oL-X2 0% S oL -3 o,
aEN, bEN2 agEMN; bEN;
“ YaL-Yah.. S fha.-Y Qm,] (3.52)
ac N beEN; a€Nn_y BENN

Since (3.50) holds for all ¢ = 1,..., N, at the steady state we have Y (%, —
e N
S 25 =0, V(i 5} € {1,..,N}, i # j. Therefore the equilibrium points
bEN;
g=1 and § = §, are also the equilibrium points of (3.51). The general gradient
of F(g,!) with respect to § is given by

r 45, 85, A=, -
_5#: Wg 7 Ben-an
3F(‘ja I_) 3 = : 3-3:":" —r-iil'
i Y = 2 o i dgn—w [
Lﬂsﬂ’—l.ﬂ 35N.—1.N
12 - qN=-1.N -
=Y, P Y (1 Nefl, .., N} i#i (3.53)
aEN, bEN;

-

It can be checked that

S = Nlnxn + 26k (s — F ) ﬁ:;"rm+

ljl ]

o

— 1 ! N—=2 TAq.
(e G 2
%_36k( 42 ﬁd ﬁgdlinxn'i' .

sok (k= 1) (G — o ) B% + B ) deetle

*

r
where (¢,d) € {1,.., N}, (¢,d) # (i,7), c# d , and s = 1 or § =.—1 depend-
ing on value of ¢, d, 7 and j. However, we do not need to specify the sign of
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s for our, n&kt task. We now investigate properties of the equilibrium points
g = and § = g based on the general gradient 8F(g,I)/83 evaluated at those
pomts ]

Step 2.1 Proof of =1 being the asg}mptotﬁc stable equilibrium point
At the equilibrinm point § =1, we have

L 40k r 95y 2082
=N+ Ll = —d ‘ P 3.55
3‘?:‘;,-‘ o=l = ﬁ:;.:.g it ach = ﬁk.‘.z edbed ( ]

where et = 0.5)leall . With (3.35), let £ € R we have

&7 QF_,‘(Q__Q
]

( 46k2nEmax(£
£2 | N~
i

') ) .. . .

T I €Te, (4,5) € {1, N}, i #
ol

(3.56)

where E,,a is the at® element of l;;. Therefore, for any given constant k if

we choose the tuning constant § such that

45k2nE max(%,)

mln(ﬁ:‘;z
N min{3;; g2

=0 4k2nbmax( o) @5 €{l...NhL i#5  (3.57)

g=

>0

then the matrix 8F(§,{) /6‘ql g=i - 18 positive definite, which in turn implies that
the equilibrium point § = [ is asymptotically stable.

Step 2.2. Proof of § = §. being the unstable/saddle equilibrium point(s):
The idea is to consider block matrices on the main diagonal, of the matrix
OF (g, l)/&ﬂﬁ:(T and show that there exists at least one block matrix whose

determinant is negative. Define Hyj. = 8Z55/0qy| =d. and let ¢, and ¢, be
the at* and b** elements of .4, {a,0) € {1,..,n}, a # b. We form the matrices
HE, from the matrix Hj. as follows

tjc

ab _ | R11 Ryo
Héjc = [h2l hgz (358)

where

by = N+ 28kT5.05" + m[(k - DITyeflis® + 2K/ 85542,
hag = 20k{(k — D)iTijef85? + 26/ 8552 Bats,
Bay = 26k|(k ~ 1)118,.:;@,’;.,2 + 2k/851)4 ¢:~
hag = N + 20k I35 + 28k{(k — 111558572 + 26/ 851763

‘JC %JC
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with s = 1/825 — 1/82%,. The determinant of HZ, is given by

ije

det(Hf‘_,’,-’;) =(N+ 25!:11",30 )Auc (3.59)

where

A =N+ 20k L8555 + 26k [(k — VITieB85.° +2k/BEE1 (82 + 45). (3.60)

ijc
Let us consider the sum:

n—1

2 Z A, = nln— N +26k(n - 1)(2(k - 1) + n)B5." /8% +

a=1 b=a+1
26k(n — 1)(2(k + 1) gEry (3.61)

eJc

Smce n>1, picking & > n/2 — 1 ensures that Z Z Agf. > 0. There-
a=1 b=a-+1

fore, there exists at least one pair {a,b) € {1,...,n} denoted by (a*,5") such
that Afjcb > 0. Now for all (4,7) € {1,..., N}, i # j let us consider the sum:

N-1 N 5" N-1

det{HE.” )
o3 a,gf Bije= Y § ) (Nﬂ,,c+25kﬂ,,c v (3.62)
i=1 j=i41 'JC i=1 =i+l

On the other hand, multiplying both sides of F(7.,{) = 0 with g7 results in
aL F(g., 1) = 0, which is expanded to

N-1 N
ST 3T (Naflasse ~ bi) + 28RN ipeBls) = 0. (3.63)
=1 g=i4l

Substituting (3.63) into (3.62) results in _

det(HZY M-l N i N-1 N
Z E Aa:gf Bije = Z Z (N = 2)F;5c + z Z q?;ctgj. (3.64)

f=) j=i+l e i=1 j=i+l v =l oj=itd

The term 21 Z;I_ (¢7jcli;) is strictly negative since at the point where
i= 3—3
¢i; = li; (the point F' in Figure 3.5) all attractive and repulsive forces are
equal to zero while at the point where g;; = ¢yj. {the point C in Figure 3.5)
the sum of attractive and repulsive forces is equal to zero. Therefore the point
@i; = 0 (the point O in Figure 3.5) must locate between the points ¢i; = ;
and ¢i; = gijc , see Figure 3.5. Furthermore if we write (3.63) as

QZ Z ﬁagc +5k(ﬁ~.’3c/ aJl Jc) = Z Z q"c ‘J (3'.65)

i=1 j=i4l . i=l j=i+l M
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The point where sum of attractive and repulsive forces are zero.

' Fig. 3.5. IHustration of location of critical points.

we can see that deceasing § results in a decrease in 85, since 83 is a bounded
constant and the right hand side of (3.65) is negative. Therefore, choosing a
sufficiently small § ensures that the right hand of (3.62) is strictly negative
since Bije = 0.5||gi5.[|°. That is

det(HELY)
Z Z — e <0 (3.66)
i=1 j=i+tl ‘Jc ")

which implies that there exists at least one pair (4,5} € {1, ..., N} denoted by
(%, 4*) such that L
. _ det(HE 2} <0 (3.67)

which implies that at least one eigenvalue of the matrix 8F(g,1)/84] =g, 18

negative, This in turn guarantees that §, is an unstable/saddle equilibrium
point of (3.51). Proof of Theorem 3.4 is completed.

3.2.4 Simulations

We carry cut a simulation example in two-dimensional space to illustrate the
results. The number of robots is N = 4. The initial positions of robots are
chosen randomly in the circle with a radius of 0.5 centered at the origin. The
design constants are chosen as C = diag(0.4,04), & = 0.5, § = 0.1. It is
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noted that this choice satisfies the conditions in the proof of Theorem 1. We
run two simulations with s = [1 0.2]7 (linear formation motion meaning that
each robot will move on a rectilinear line to form the desired formation) and
ug = [sin(0.5¢) cos{0.5t)] {circular formation motion meaning that each robot
will move on a circle to form the desired formation). For clarity, we take the
formation parameter n as a scalar to implement formation expansion. The
desired formation is depicted in Figure 3.6. These simulations are motivated
by gradient climbing missions in which the mobile sensor network (each mo-
bile robot serves as a mobile sensor) seeks out local maxima or minima in
the environmental field. The network can adapt its configuration in response
to the sensed environment in order to optimize its gradient climb. For exam-
Ple, gradients in temperature fields (among others) can be estimated from the
data collected by the mobile robots; these are of interest for enabling gradient
climbing to locate and track features such as fronts and eddies. These gradi-
ents can be used to compute the desired reference velocity vector uy in our
simulations in this section. In the first 4.5 seconds (for the linear formation
motion case) and 15 seconds (for the circular formation case), 7 is set to zero
then is updated to iy = 3 for the rest of simulation time. The update gain is
chosen as I' = 2 (scalar).

Robot 2

Robot 3 Robot 1

Robot 4

L 3
Fig. 3.6. Desired formation for simulation.
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Figures 3.7 and 3.8 plot simulation results for the linear formation motion
and circular formation cases, respectively. For clarity, we only plot the control
) = [ug; w7 and distances from the robot 1 to other members in the
group, t.e. |lqiz]|. |aall and [lgi4|- It is seen from these figures that the desired
formation shapes are nicely achieved and there are no collisions between any
robots, see the bottom right figures in Figures 3.7 and 3.8, where the distances
from the robot 1 to cther members in the groups are plotted. Clearly, these
distances are always larger than zero. It is also seen from Figures 3.7 and 3.8
that at the beginning all the robots rapidly move away from each other to
avoid collisions since they start pretty close to each other.

3.3 Formation control of N mobile robots

This section shows that the control method developed in the previous sections
can be readily extended to force a group of N nonholonomic mobile robots
of unicycle type to move in such a way that a desired formation is achieved.
For clarity, we consider only the kinematic model of the nonholonomic mo-
bile robots. Designing the control system at the dynamic level even without
requiring robot velocities Ae measured can be carried out using one more
backstepping step [12] and the proposed exponential observer in Chapter 2.
Consider the kinematic model of the unicycle mobile robet 4, whose only two
wheels are actuated and the third wheel is not actuated shown in Figure 3.9
(see Chapter 1), given by

#; = v; cos{ey)
% = v; sin{¢g;)
& = w; (3.68)

withi=1,...N. .
Moreover, we will consider the the linear and angular velocities (v; and
w;) of the robot ¢ as the control inputs.

-

3.3.1 Control design

The control design consists of two steps. At the first step, we consider the
control v; and the yaw angle ¢; as a virtual control to steer the robet posi-
tion (z;, ¥:) to its desired location. At the second step, the control w; will be
desired to force the virtual yaw angle to converge to its af:t.ual yaw angle.

Step 1. Define g : .
bei = &i = (g, , R (3.69)

where ay, is a virtual control of ¢;. With (3.69), we can write (3.68) as
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Fig. 3.9. Geometric descsiption of the nonholonomic mobile robot i,

g = u + Ay, (3.70)
where
-~ | _ leos(ey,)
%=y |0 %= | sinay)
(cos{gei} — 1) cos(erg,) = sin(de;) sin{oy, )
A¢ei B Sln(¢e‘) COS{O:@) + 8305(9&'5,) - I)Sm(a:‘) i (371)

It is seen that {3.70} is almost of the same form as (3.21). However, the
problem is that the controls v; and ag, are not solvable directly from the
control u; if u; is not designed properly. We therefore present briefly how 1,
is designed to tackle that problem. Consider the following potential function
{the same form as (3.24)) N

vi =%+ 80; ’ (3.72)

where 8, 4; and f; are defined in Section 3.2.2, see (3.26) and (3.27).
Differentiating both sides of (3.72) along the solutions of (3.70) gives

= Y 1% + A, — ul — (45 + Ay, - uy)) ~ ¥4 (3.73)
JEN;

N
where £2;; and W;; are defined in (3.29), and uj = J1+ 3 || 30 25]j2ue . Rt
i=l jEN;

is noted that we use u}; instead of uy in (3.73} to overcome the nonholonomic

problem of the mobile robot under investigation. Indeed, lim; oo Y, £2;;(f) =
FEN,

0 implies that lim;_, . u3(t) = ug. From (3.73), we choose the control w; and

the update law for n as
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u; = —Cllugl] 3. 25 +uy
FEN,

3.74
f=—I'{n—ny) (3749

where C' and I" are diagonal positive definite matrices. Again, |[ug4l| is
included in the control u; to overcome the nonholonomic problem. Defining
¢g = arctan(uqy /uqgz), then from the first equations of (3.74) and (3.71), we
have

cos(ag, )i = —crllugll 3 w5 + ‘/1 + Z I E 2511 [Juall cos(@a)
JEN;
(3.75)
sin{ag, v = —¢zllug]]l X 245 + \/1 + E Il 3> 92:51%)|uall sin{bq)
fr =1 R,

where Dﬂ; and 2,;; are defined as §2;; = [{2; Qy,:j]T, ¢; and ¢y are defined
as C = diag(ci, c2). We now need to solve (3.75) for v; and ag4,. To do this,
multiplying both sides of the first and second equations of (3.75) with cos(¢q)
and sin{¢y}, respectively, then adding them together result in

cos(ag, — da)vi = —cillugll D 2z cos(da) —
JEN;

' N
calfuall 3 $2yij sin(da) + \J L4+ 311D $21R1luall- (3.76)

FEN; A

On the other hand, multiplying both sides of the first and second equations
of (3.75) with sin{¢y)} and cos(¢4), respectively, then subtracting from each
other result in p

sin(ayg, — ¢a)v = erlluall 3 Qeijsintha) ~ ealluall Y Pyij cos(pa){3.77)
JEN FEN;

From (3.73) and {3.77), we have
=¢et

€1 Y, 2yjsin(da) —ca Y, 45 cos(da)
FEN;

JEN:

arctan

FEN; vi=1 jEN;

- 2 (Clnm_: c0s(Pg) + c2f2yi; sin(da)) + \/1 + 2 I Z ‘Qij”2
- _(aT8)
»
It is seen that (3.78) is well-defined if the positive constants ¢y and ep are
chosen such that .
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.Y o+ <l (3.79)

The control v; is,found by solving {3.75) as

v; = cos(oig, )}|uall (—Cl T iyt ‘ﬁ*- % It 2 92112 COS(‘f’d)) +
FEM: i=1 FEN; (3.80}

FEN; i EN;

N
sin(ag, }{uall (—62 > Ry + \/1 + 21” P Qﬁj”?'?in(ﬂbd)) .
i=1l jEN,
Substituting (3.74) into (3.73) results in

@i = =lluall D QTC D" 2yt S 19T (g, ~(ui+ A4, — )+ T(n~np)l.
FEN; jenN T GEN
(3.81)

Step 2. To design the control wy;, differentiating both sides of {3.69) along
the solutions of the third equation of (3.68) and choosing the control w; as

Wy = ~dipes — Gg; ~ 3 0 A, [es (3.82)
JEN;
where d; is a positive constant, and the term 3. 2T Ag,./de: is to cancel
JEN:

the cross term Y, 2T A4, in (3.81), result in
JeN,

é’ei = diei — Z Qg‘a@ci/ﬁbﬂ" (383)

JEN;

N

1
Note that Ay, /d.; is well defined since sin(@;.)/dic = [ cos(dieA)dA and
0

{cos{@ie) — 1)/ ie = } sin(¢ieA)dA are smooth functions.
B

3.3.2 Stability analysis

We consider the following function

N
frot =log(1+ Y (s + ) + 3= n)TTm=n) (389

i=]

whose derivative along the solutions of (3.81), (3.83) and the second equa-
tion of (3.74) satisfies
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N N N
lul 3 ¥ 25C Y 2+ L didl X X WED(n-—ny)
.~ g =1 56N, Jen: = 4 =hiek B
ot = N N
1+ zl((f’i + ¢%) 1+ E}(lpe + ¢2)
= i=
(n—np)"T(n—-ny) (3.85)

where we have used

N N
=20 Dy + Ay, ~wd) =y Y [ —ug + Ap,)

i=1jeN i=1 jEN,
N N
=—lluall 3. > 025C S 2+ Y. Y 2l {3.86)
" t=1 N, FEN; i=1 jEN;

-

The rest of stability analysis can be carried out in the same lines as
in Proof of Theorem 3.4 since (3.85) is of the same form as (3.38} anhd
Hmy.o Hua(t)|| # O by assumption. Finally, note that Hmy o, deit) = O

and lim;oc 3, £2;;(t} = O implies that lim;_.co (¢:(t) — ¢g) = 0, i.e. the yaw
FEN; ,
angle of all robots converge to the desired angle ¢a = arctan{ua,/uq.).

8.3.3 Simulation results

We now perform a simulation to illustrate the results in the previcus subsec-
tion. The number of robots, initial conditions of the robot positions, control
gains, desired formation velocity and desired formation shape are the same
as in Section 3.2.4, The robot heading angles are initialized randomly in the
circle with a radius of 0.5 centered at the origin. For clarity, we only simulate
the circular formation motion, and we do not include simulation resulés on
the formation expansion as in Section 3.2.4, 1.e. the formation parameter 7 is
set to zero in all the simulation time. The other design constants are chosen
as d; = 5. Simulation results are plotted in Figure 3.10. Again, it is seen that
the robot: are forced to move to nicely achieve the desired formation and no
collisions between the robots occur. Moreover, the yaw angle of all robots con-
verges to the desired value ¢4, see the top-right figure in Figure 3.10, where
the yaw angle errors are plotted {¢.; = @& — ¢4). A close look at Figure 3.10
shows that the main different between simulation results in this subsection
and those in Section 3.2.4 is that the robots take a longer time to approach
the desired formation. This is because we use the heading angles ¢; as the
virtual controls to steer the robots to overcome the noholonomic constraint.

»

*
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Fig. 3.10. Mobile robot circular formation motion: simulstion result,

3.4 Notes and references

Basically, formation control involves the control of positions of a group of
the agents such that they stabilize/track desired locations relative to refer-
ence poini(s), which can be another agent{s) within the team, and can either
be stationary or moving. Three popular approaches to formation control are
leader-following (e.g. [39], [36]), behavioral (e.g. [40], [41]), and use of vir-
tual structures (e.g. [42], [43]). Most research works investigating formation
control ntilize one or more of these approaches in either a centralized or de-
centralized manner. Centralized control schemes, see e.g. [36] and [44], use a
single controller that generates collision free trajectories in the workspace. Al-
though these guarantee a complete solution, centralized schemes require high
computational power and are not rcbust due to the heavy dependence on a
single controller. On the other hand, decentralized schemes, see e.g. [45], [46]
and {37], require less computational effort, and are relatively more scalable
to the team size. The decentralized approach usually involves a combination
of agent based local potential fields ({36], [37], [38]. The main problem with
the decentralized approach, when collision avoidance is taken into account,
is that it is extremely difficult to predict and control the critical points (the
controlled system often has multiple equilibrium points). It is difficult to de-
sign & controller such that all the equilibrium points except for the desired
equilibrium ones are unstable points. Recently, a method based on a different
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navigation function from [31) provided a centralized formation stabilization
control design strategy is proposed in [46]. This work is extended to a decen-
tralized version in [47]. However, the navigation function approaches a finite
value when a collision occurs. In (32}, [31], [46] and [47], the tuning constants,
which are crucial to guarantee that the only desired equilibrium points are
asymptotic stable and that the other critical points are unstable, caunot be
obtained explicitly but "are chosen sufficiently small”. When it comes to a
practical implementation, an important issue is "how small these constants
should be?’ Moreover, the control design methods ([36], (48], [37]) based on
the potential/navigation functions that are equal to infinity when a c¢ollision
occurs exhibit very large control efforis if the agents are close to each other.
Hence, a bounded control is called for. These problems motivated the work
in this chapter. The material in this chapter is based on the work in [49] and
[50]. "
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Formation Control of Mobile Robots with
Unlimited Sensing: Qutput Feedback

S

In this chapter, we investigate formation control of a group of unicycle-type
mobile rohots with a little amount of inter-robot communication. A combina-
tion of the virtual structure and path-tracking approaches is used to derive
the formation architecture. Each individual robot has only position and ori-
entation available for feedback. For each robot, a coordinate transformation
is first derived to cancel the velocity quadratic terms. An observer is then
designed to globally exponentially/asymptotically estimate the unmeasured
velocities. An output feedback controller is desighed for each robot in such a
way that the derivative of the path parameter is left as a free input to synchro-
nize the robots’ motion. Simulations illustrate the soundness of the proposed
controller.

4.1 Problem statement

4.1.1 Formation setup

A group of N mobile robots needs N mdmdual reference paths, which are pa-
rameterized so that when all the path parameters are synchronized, the robots
are in formation. A modification of the conventional virtual structure approach
is used here to generate the reference paths. We consider a virtual structure
whose center moves along a reference path p(sg) = [zao(s0), Yao(s0)]¥ with
sp being tne path parameter, see Figure 4.1. Since the structure under consid-
eration is virtual, the center does not have to be the center of gravity but can
be any convenient point. The shape of the virtual structure can be varied by
specifying the distance I;{z40(s:), ys0(s;}) from each place-holder to the<center
of the structure. This variance is particular meaningful in practice. For exam-
ple, the formation has to change its shape when the vehiclesenter a tunnel,
When the structure moves along the path‘ I'o(sg), the place-holders generate

¥
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Fig. 4.1. Formation coordinates.

reference paths Ij(s;) = frai(s:), yd‘-(s.-)]T, 1 <4 < N with s; being the it®
path parameter, given by:

Ti(8:) = o(s:) + R{dao{s:)li(2a0(3:), yao(s:)) (4.1)

where

Lys(xdo(s:), yao(ss))

— | cos(@ao(s:)) —sin(dan(si))|  ~
Ri¢ao(si)) = [Sin@:f(s,;)) OOS((de?gé)) ] ’

Li(zao(s:), yao(ss)) = ["“'(‘”m(si),m(si))] .

date) =orcon (25)
2 i)
3:30(31?) = %(030) 30=3‘-‘ y:{n(st‘) = %{fo) e (4'2)

Intuitively, one might set s;(¢} = ¢, i.e. the current time instant ¢ is used
as the path parameter. However, the use of s; as the path parameter has an
advantage that its time evolution, §;, can be treated as an additional "control
input”. Tnis additicnal control input is utilized so that the overall control
system for single mobile robots possesses certain robustness with respect to
measurement error and external disturbances. In this chapter, we will use
this additional control input for formation feedback and synchronization of
the path parameters. It is noted that in the conventional virtual structure
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approach, the distance from each place-holder to the structure center is con-
stant, i.e. the shape of the structure cannot be changed. Having generated
each reference path for each mobile robot, the remaining tasks are to design a
controller such that each vehicle tracks its own desired path, and all the path
parameters of the reference paths are synchronized.
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Fig. 4.2. The i** mobile robot and interpretation of path tracking errors.

o

4.1.2 Mobile robot dynamics

We consider a mobile robot with two actuated wheels in Chapter 1, see Figure
4.2. For convenience, we rewrite the equations of motion of the i** mobile robot
here: ,

i = Ji(miw; :

My + C'.-(f:,—)w,- D=1, t=1,...N
where all the state variables and parameters are defined in Section 1.3.1,
Chapter 1. .

(4.3)

4.1.3 Control objective A

Before presenting the control objective, we impose the following a.;sumption:
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Assumptibn 4.1 1) For each robot, only position (z;, yi}and orientation ¢,
are measurable.

2J For each value of si, there exists a unique value of z4;(s;) and ya(s:).

3) There cxist strictly positive constants €y; and eq; such that:

2 +yf Zen do2en (4.4)
where o' denoting 0 e [Ds;.

Remark {.2. Part 1) of Assumption 4.1 implies that we need to design an
output feedback contscl system. Part 2) means the unique solvability of each
individual path from its parameter. Part 3) means that each path is regular,
and that the virtual structure moves forward. The case where the virtual
structure moves backward dan be treated in similar way. Part 3) also means
that we do not consider the problem of stabilization.

Having discussed on how the reference path, see {4.1), for each individual
mobile robot, the formation control objective boils down to design a control
system, under Assumption 4.1, such that

Jim ||[((2:(8) — 2as(8), (wilt) — yai(t)), (ilt) =~ Sa()N)] = O (4.5)

and
Jim (5:(8) = so()) = 0 (46)

where ¢g; = arctan (g-n%%) The objective (4.5) justifies both position and
orientation tracking tasks in the sense that each robot moves on the path
and its linear velocity is tangential to its own path. On the other hand, the
objective (4.6) guarantees synchronization of all the path parameters, i.e. all
the robots are properly arranged. ~

4,2 Observer design

If all robots in the group are damped, i.e. the damping matrix D; is strictly
positive definite, then one can use the observer designed in Chapter 2, Gection
2.2.2. For a more general result, we do not assume any robots be damped or
undamped in advance. For the sake of completeness, we represent some part
of the observer design in Chapter 2, Section 2.2.2 including the coordinate
transformation to cancel the velocity cross terms.

We now convert the wheel velocities wy; and wy; to the linear, v;, and
angular, w;, velocities of the robot by the relationship:

9, = B Y, with 9; = [u; w7, By = — [i b ] 4.7)
L —
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With (4.7), we write (4.3} as
% = Ji{m )0

B; = —Cylwi)% — Did; + B M, (48)
where
Ji(m) = [BOS{¢£) Ein(@f} {;]T‘
¢, = [U =bicif (ma1g + mag)ws ,
e /byf (m1; — maee)w; 0
D; =B "M 'D,B;. (4.9)

We first remove the quadratic velocity terms in the second equation of (4.8)
by introducing the following coordinate change:

Xi = Qilm)9; (4.10)

where Q;(n:) is a globally invertible matrix with bounded elements to be
determined. Using (4.10), we write the second equation of (4.8} as follows;

Xi = Qi) — Qu(m)Ciwi)di] + Qulm)(=Di% + B M 'r)  (4.11)
We now cancel the square bracket in the right hand side of (4.11) for all

(%) € RS. We assume that Gikj (), k = 1,2, j§ = 1,2 are the elements of
Qi(n:). We now need to find gi;(m), ¥ =1,2, § = 1,2 such that

[Qi(m:)9; ~ Qu(m)Cilwi)ds) =0, ¥(my, ) € R, (4.12)
Using the first equation of (4.8), we can write (4.12) as

—gg‘— cos(e; ) + —91— sin(e; v +2 L gy
23'"‘ COS(¢1)”: + leu Sln((,’f’,)‘t’; %_uwt

008(‘351)”1 + By sm(q&,)v, + Qg"‘u‘w: x (4.13)
Qg;u cos(¢;)v; + Qg_n sin{g)v; + 2‘Imw, ’
[vs] _ [%11 q@lzJ _b“—m“_‘.:mmw?
' wi Fi21 9i22 | | Bilmmans —imiag) UF
which further yields
I Az
( oz, cos(d;) + %, sm(nf%)) +
Bira 30;::2 (hk2 Citfik? ) .
i} + —=—sin(¢; ——————— LW +
( 005: 0s(6:) e:) - bi(ms — tag) Jo -

Ogik2 b ;Ciik1 *
§ 3 Cidi 2
—_—— ———— Wy = 0 * 4.14
( O¢;  munu+ m12i) ' ‘. (414)
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for k=1, 2 Giearly (4. 14) holds if we choose gix;(m), £ = 1,2, = 1,2 such
that

az cos( é‘) + —gﬁsm(gﬁ,) =
8%“-" + Bguz af‘ cos{¢;) + %@. sm(q&, Pl — =0, (4.15)
Bor ¥ sk =

A family of solutions of the above partial differential equations {PDEs} is

gir1 = Cup1 8in(c; D) + Cika cos(ci Ai i),
Gikz = bi(mi1: — M1} B¢ (Cika cos{c; Aidhi) — Cirz sin{cs Ayy))

where 4; = 1/ \/mzm - mlgm-, Cir'and Cia are arbitrary constants. Setting
Ci11 = Cig2 = 0,Ci1z = Cjo1 =4 results in

(4.16)

Qiln) = [Qill 9‘512] - [006(054:'@) =biAi(my1; ~ maz)}sin(e; Aig)
' izl 922 sin{e; Aidi) bidi(min = mz) cos{c: Aigy)
(4.17}
This matrix is globally invertible and its elements are bounded. We write (4.8)
in the (7, X;) coordinates as

= Gi(n) X,
Xi = —Dyilm) X + Qu(m) By ' M7y

where Gi(m) = J(m)Q (), Dya(ms) = Qi) DiQ; " (m). 1t is seen that
(4.18) is Linear in the unmeasured states. If the robot is internally damped a
reduced-order observer, i.e. an observer estimates X; only, can be designed.
To cover both damped and un-damped cases, we use the following fuil-order
observer:

(4.18)

-

i = Gy(n:) X + Kou(mi - ) ’

4.19
X‘ = _Dm(fh}X +Qs(ﬂt)B IM- 73 +K021( nl) ™~ ( )

where #; and X; are the estimates of n; and Xj, respectively. The observer
gain matrices Koy; and Kog; are chosen such that Qoy; = K&ipmg + Pori Koui
is positive definite, and that

Gi(m:)" Pori ~ PoniKozi = 0 (4.20)

with Po; and FPyg; being diagonal positive definite matrices. From (4.19) and
(4.18), we have N
T = Gi(m)} X — Kouidhe,
Xi = —Dyi(m) X — Koziti
where i = m — #;, X; = X; — X;. The aforementioned observer result is
summarized in the following theorem.

(4.21)
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Theorem 4.3. Assume that the solutions of (4.18) exist, if the mobile robot
is internally damped, i.e. the damping coefficients, dyy; and dao:, are strictly
positive constants, the observer error dynamics ({.21) is globally exponentially
stable at the origin for allm; € R3. If the mobile robot is internally un-damped,
i.e diy; = daosy = 0, the observer error dynamics {4.21) is globally stable
at the origin for all ; € R®. Furthermore, assume that the velocity w;{t)
starting af wi(ty), 0 < tg < t is globally bounded, i.e. there exist a class-K
function Gy, and a constant coi such that lwi(tH < Boi([[(m (o), vilte}) D) +
coi = Ware, VO <t <8, (mi{ta). vi(to)) € R®. Then the origin of ({.21} is
globally asymptotically stable for all m; € R

Remark 4.4. The assumptions on existence of the solutions of (4.18) and on
boundedness of w; (¢} are needed here to establish global exponential fasymptotic
stability of (4.21). These assumptions will be relaxed when considering the
overalt closed loop system, i.e. when an output-feedback controller is intro-
duced.

By defining 0; = [#; ;)7 being an estimate of the velocity vector ¥; as
di = Q7 ()X, (4.22)
the velocicy estimate error vector, 9; = [§; w7 = ; — ¥; satisfies
9 = Q7' (m) X.. (4.23)

By differentiating both sides of (4.22) along the solutionAs of the second equa-
tion of (4.19), and noting from (4.22) that X; = Q,(n;)9:, we have

s dQ Y (n) . _ N i .
b= L g 920 (Dlm) X - Qu) B M1 = Kol ~ 1)
=Cilw); — Dty + B M s 4+ Q7 (i) Koz (s — i)
~Ci(a:)0; — Did; + B MYy — Ci(wa)ds + Q7 Hmi) Koz (s — )

g (4.24)

since Cy(w;) is linear in w;, see (4.9). We now write (4.8) in conjunction with
(4.24)as -

E; = cos(Py) s + cos(;);

i = sin{@q)d; + sin{¢: )%

g{ﬁ,; =y + W (4.25)

'ﬁ'i = Tyt + (i

Wi = Tuei + i * .
where §2,; and §2,,; are the first and second rows of £2;: .

2 = =Ci(w:); + ?i_l('?i)KD".’iﬁi " (4.26)
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and we l;ave chosen the control torque
. ;T,i = MgBi (C‘g(ﬁ?;)ég + Dgtﬁ,r + {Tvm' de}T) (4.27)

with Ty and 7y being the new control inputs to be designed in the next
section.

4.3 Proof of Theorem 4.3

We prove Theorem 4.3 by considering the damped and un-damped cases sep-
arately.

-

4,3.1 Damped case.
Consider the Lyapunov function
Vou =] Pt + X P X (4.28)
whose derivative along the solution of (4.21) and using (4.20) satisfies
Vou = — Qoufli — X[ Qoas X {4.29)

where Qgz; = D:{,-(nf}Pm,- 4+ Py2:Dyi(m:). Since Dy is positive definite and
Die(m) = Qulm} B ' M D; BiQ;™ (s) with Qi(ms) being given in (4.17), and
(Jo1; is & constant positive definite matrix, there exist strictly positive con-
stants og; and pg; such that “(ﬁg(t) X-(t))“ < pos “(ﬁ,—(to) X’v(tg))“ g coi{tto)
forall t > o > 0. Global exponential stability of {4.21) holds for all 7; € R3 be-

canse all clements of Ji(m;}, Q; ' (m:), Dyi(m:) are bounded, mdependent from
x;, ¥, and depend on only sin{¢;), cos{é:), sin{c; A;¢;), cos(e; A;¢;) and the

robot parameters, as long as the solutions of (4.18) exist. This also implies
from (4.23) that

(E:(0), BN < s | ltod, Kilto)) | €77, Ve 22020 (4.30)

where 7g; is a positive constant. That is we can use (4.19) to reconstruct 1§i,
an estimate of X; from (4.22).

4.3.2 Un;damped case

Note that in this Dy;{n:) = 0 since I; = 0. Hence the time derivative of (4.28)
along the solution of {4.21) and using (4.20) in this case satisfies
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Vous = —iif Qorifi < 0 (4.31)

which implies “ (1), Xi(t) || < d0i(+) with So:{-) being a non-decreasing func-

tion of | (71:(to), X (tn)]”. Next, we consider the Lyapunov function

Vozi = pors (Y Poriti + XT Pozs X¢) — po2iiy Gilmi) X, (4.32)

where por; and po2; are positive constants to be picked such that Vg, is
positive definite. Since Gi(n:) = J;(m)Q; ! (:}, we have

L2 L2
802im "(ﬁ'uxe)| < Vozi < dozinr ”(ﬁnXs')” (4.33)

where
Sozim = tors 1N (A (Pora), Am(Pu2i)) — prozs max (1, 1/ (b; Ag(mays — maze))),
So2im = po1; MaX (A (Fore), Am(Fozi)) + po2: max (1, 1/(d; Ai(myy; — mazi))).

Hence %2‘ is positive definite if pgy; and poe; are picked, for chosen Fpy; and
ng,‘,, such that
bo02im = 8g4m > 0. (4.34)

By taking derivative of (4.32) along the solution of (4.21) and noting that
Dyi(m;) = 0, we arrive at
Vooi = —pio1:s Qovifhs — pio2s XT Gi(me)TGi(m) X — ptoneti? K3:Gi(ni) X +
ro2iis Gi(ns)T Pyh Gilm) Pons X — poaitly Gi(mi) X (4.35)
After some hounding calculation, we have

2

¥
-

_ 4 Ty
T K Gim) X < s (1/ e 40° + s )
77 Gi(mi)T Pt Gilni) Pore X < Asi 1ll® .

- Gi(m) K= —AT Gpilm)di Xi € AuwMa: (1/(4&)1&) "7-?5"2 + Lo1: I

~XTGim)"Gitm) K < - A || X,

02
i)
(4.36)

with

Ay == min (1, 1/(d; Ae(myys ~ miz))?), ¢

Agj 1= Am(Kon) max (1,1/(8;4;(my1; — mi5:))), ° .

Agi = Ap(Pors)/Am(Poas) max (1,1/(b; Ai(mans — mis))?)

Agi = max (1 + ¢;d;, ¢/ (bi(my1 - mr2i)))

-—
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where £o3is a positive constant. Substituting (4.36) into (4.35) yields
Vo2i £ ~ (pguidm(Qoni) — pozi (1/(4€01:)( A + Agywags) + Aze)) |7l* —
: _ 2
¢ro2i (A1 = Eo1:( A2 + Agiwari)) ”X,” . (4.37)

It is seen ‘rom (4.37) that we can pick small constants o35, po1; and a large
enough constant pgo; such that (4.34) holds and

. ~ 12
o Vaai < —6oa 170 = €oui || X (4.38)

where £go; and £oa; are positive'bonstants, which in turn implies global asymp-
totic stability of (4.21} in the un-damped case. Note that (4.38) in general does
not imply global exponential stability of (4.21) since wpy; can depend on the
initial cor ditions. O

4.4 Path tracking error dynamics and control design

In this section, we will consider the dynamics (4.25) and design controls T,
and Ty.; for the robot i to achieve the formation control objective posed in
Section 2. The actual control vector 7; is then calculated from (4.27). The
main ideas of the control design are as follows:

1) Tracking errors of the robot ¢ are interpreted in a frame attached to the
reference path Ii(s;) such that the error dynamics are of a triangular form to
which the backstepping technique [12] can be applied.

2) The orientation error and estimate of the robot linear vélocity are used
as virtual controls to stabilize the tangential and cross-track errors interpreted
in the frame attached to the robot reference path. The reason that the orien-
tation error is not directly stabilized at this stage but is treated as a virtual
control to stabilize the cross-track error, is to overcome difficulties caused by
the nonholonomic feature of the robot.

3) The estimate of the robot angular velocity is then used as a virtual
control to stabilize the orientation errvor interpreted in the frame attached to
frame attached to the robot reference path.

4) The controls 7, and 7, are finally designed to force the actual esti-
mates of the robot velocities to converge to their virtual values by using the
backstepping technique.
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5} The above control designs are carried out in such a way that the deriva-
tive of the path parameter $; for the robot 7 is saved as an additional control
input. This control input is then used to synchronize all the path parame-
ters. The path parameter derivative, s, of the path of the virtual structure
center wil' be chosen as a function of the path tracking errors of the robots
and time. This choice means that the control system takes mobility of each
robot into account, i.e. a formation feedback is exhibited in the control system.

4.4.1 Path tracking error dynamics

To prepare for the control design, we first interpret the path tracking errors
{(x; — zai), (Wi — i), ($i — ¢ai)) in the frame Op; Xp; Vi, of which the origin
Oy is a poigt on the path [5(s;), Oy Xp and Oy, Yy, axes are parallel to the
surge axis and sway axis of the robot, respectively, see Figure 4.2. In Figure
4.2, the direction of vy is tangential to the path Ij(s;). From this figure, we
have: .

Tei = (L5 — Tas) cos(ds) + (s — vai) 8in{ds ),
Yei = —(2i — 24 sin{e) + (s — vai) cos(d:), {4.39)
thei = by — .

The physical interpretations of the new tracking errors (e:, Yes, ¢e;) defined in
(4.39) are: z,; is the tangential tracking error, y.; is the cross-tracking error,
and ¢,; is the heading error. Differentiating both sides of (4.39) along the
solution of (4.25), we have

Eep = T — Vai COS(ei) + Yeui (Wi + 5) + &5
Yei = vy SiN(Pes) — T (Wi + 1)

(.bﬂ' =i — Wy + w; - (4.40)
f{i = Tyei + fui Y
Wy = Twei + Swi p

where we have defined

ST a5, wa = CailSI8) — Tai(8e)yi (s
Yoy = wdi(si) +ydi(31)sh Wy 37325(3;') +y£(8;) 3. (4'41)

In the above expressions, we refer vy; and wy; to as the desired linear and
angular velocities of the robot on the path. It is noted that speed of the
robot on the path is specified by $;, and that (4.41) i well defined, see
Assumption 4.1. From (4.39) for any value of ¢i, (@ei, Yei, des} = 0 1f and
only if (zi, yi, i) = (Tai, Ydi» Pdi ). we have therefore converted therproblem of
output-feedback path tracking for the mobile robot in question tq a problem
of stabilizing (4.40) at the origin.

LY
L
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4.4.2 ('.Eontrol design

It is seen that @.40) is of the lower triangular structure with respect to 9; and
;, we use the backstepping technique [12] to design Ty and Ty in three
steps.

Step 1: Stabilizing the (z.,y.;}) dynamics. In this step, we consider
#; and o,; as controls. Define

.

Vei = Ui — Oy Pei = dei — Qg (4.42)

where a,; and a4 , are the virtdal controls of #; and ¢.;, respectively. More-
over, we define

-"?; =& — wilt, T, Yo Ge) {4.43)

Where 2, = [Ze1, ez oons Ter) s Yo = (Yers Yezs s Yerl® + Pe = [Bet, Be2s v Per] 3
will, Te, Ye, e ) is a strictly positive function that specifies how fast the #** mo-
bile robot should move to maintain the formation since §; is related to the
desired forward speed, see (4.41). This function will be specified later. Sub-
stituting (4.42) and (4.43) into the first two equations of (4.40}, and choosing
the virtual controls e,y and a,,, as

khxes

Ay

Qg =

+ Vi COS((f)gg), Qg = — arct'an( kz;yﬂ ) (444)
1i

where 4); = /1+ :1:3,5 + ygi, T4 = xd‘(s,) + y (3,), k1; and kq; are posi-

tive constants, result in the {x., y.;) error dynamics

. kit o . - "
Fog = — IA!_ + Vei — Dyi8i €08(Pei) + Yei (i + Be) + sy ~
. k iﬁ it Yed k t'v tst £33
i = ——rditi¥ei | DTl | gyo(d + wi)(sin(@es) cos(ag, ) +
) Ao Ay
(co8(des) ~ 1) sin(ag,,)) — Tes(ts + 4) (4.45)

where o, = /1 + 2, + (1 + k3, )yz,.

Step 2: Stabilizing the ¢.; dynamics. In this step, we consider u; as
a control. Define

Wei = Wi — i (4.46)

where a; is the virtual control of ;. From (4.42) and (4.44), the first time
derivative of ¢,; is given by
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- Ay K2y
qbei = (1 - khxea A ) (awt + Wei + w‘a) + Z_"A'_g"(vdtwt Sln(‘»bet)(l + xe!)

- KoiDaid
Teiei(Cwi — Daswi c08(deq))) + 5‘ # ‘(v.ﬁw‘ sin(¢e:)(1 + 2%) +
_ ki eiyes L 2
ToiYei Daiw; COS{des )} - __28__5!%’51(0“ + ;) - Wailws + 8;). (4.47)
Audy;

If the constant ks; is chosen such that 0 < kg; < 1, then from (4.47) the
virtual control e, is selected as

1 (_ kaidei | -
(1 - kaizei A1 A57)
(1 + 22} = Teieil@vi — Daiw; 005{ce;))) —

vz,:jij_‘ (sin(gei) coslagy,,) + {cos(Pe:) — 1) sinler,; ))) (4.48)

o i (:'::ii(")y:i‘i(3')"“:::i("u)y:ii(si)} ) Iy
where A = \/1 + @5, g = TR IeR)) , k3 Is a positive
constant. The last term in (4.48) is included to cancel the cross term in the
Yei-dynamics. It is noted that (4.48) is well defined since 1 — kg;x¢; 41,457 >

1 = koi > 0; sin{@e)/ e ='flcos(r,?)¢)\)d/\ and (cos(de) ~ 1}/de = fsin(&,/\)d/\
o 0

are smooth functions of @.. It is also of interest to note that the upper bound
of ay; is given by

Qi =

A A2 {'vdw.wt 31n(¢ei) X

s | < k3i + |Waijw; + kzi(13|_l’f;:i¢‘t’i + ki) + 240 Jos =M, (4.49)
3

Substisuting (4.48) into {4.47) yields

L
i Kaifei  Daiwilei

¢zi = - AS" m(gin(¢2i) Oos(a!f'ei) + (COS(Q&C,_) - 1) Sin(ad’ei)) +

- . 0 85 - X
(1 = kpzei ALiAS?) (wei + 104} + k2 a 5 (Baw; Sin (e )(1 + 22) +
. Alidzi
' k2iTeiYei . _ oz
LeilfeiDdiw; €08(Pe;)) — 2 !;e (Vei + B} — Baids. {4.50}
AliAzs

Step 8: Stabilizing the (v, w.;) dynamics. In thi¥ step, the caontrols
Tves @nd Ty ave designed. From (4.42)and (4.44), the time derivative of ve;
is given by »
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+

. Bary,
ve}' = Tyei + Qm =

ot

) 60
) Fres 5 (8- %(3;- + wy) X €08(des) + vei (1 +By) + ;) —

,Z ﬁ (Pa (85 + wy) sin(de;) — x5 +185)) ~

+

Z Ot (wz W(35 +wj) + ;). (4.51)
;_1

From {4.51), we choose tht; control T,g; as

-

i Vi g _ .
33‘: Wit gyt Lt B, (95 = Dajw; cO8(Pe;) + Yejtis} +

Toei = —Kaitei +

X, da,

Z By, 2 (Bgp; Sin{cbej) ~ Tejth;) +

j:l

N -
By (i; — Dageoy) — Tei | KaiTeileiPes

= Bpes BT A, AliA;,‘

(4.52)

where ky; is a positive constant. The last two terms in (4.52) are included to
cancel the cross terms in x.; and ¢.; dynamics. Substituting (4.52) into (4.51)
gives

. da i 3 doy; - % - -
Vi = —kaivei + i — 58— O o (—Daybs 008(es) +otesth; + 5) —

as; = Oc.;
N o
aa (vd_,s_,, SIN(Pej) = TejW;) —
j-l
Aayi 2 . k?ixeiyei‘sci
b iy)) - 2o Radeiide 453
g Opej ( %7)) A Apag (4.53)

From (4.46) and (4.48), the time derivative of w,; is given by
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3 Oty

3Cl'w,'

T (i) ~ T

Wei = Topei + §i — wh Bt

. O
3: (‘UJ — gy (3.? + w;) co8{des) + yeoy (W5 + W5) + ”J) -

6‘08
3a(%@+%NM%)zM%+%D—

Z Dt (ﬁ’:‘ — W (3 + wy) + 5)) (4.54)

From (4.54), the control 7, is chosen as

~ da Dowi = Bar
Twei = —KgiWei + i wi + = + ki (”j — gy Cos((beg) + yerJ) +
ds; gt 3 Tej

N il T,
3 (vd,wj SiN(de;) — Tejthy) +

il wi ;o
Z = ;‘ (w.'f w‘fjwj) - (1 - k21xeadhdgg )é’ea (4.55)

Wei = —kgiWei + S — ——

éw . s
Z i (—-wd,s, + w,)) (1 - kg,'xc,-Al,-_Agf) Pes- (456)

We now need to choose all the functions wi (¢, Ze, ¥, ¢.) and the update law for
§; s0 that (46) holds. To do this, we consider the following Lyapunov function

N
lq=§:(vﬁ+z;+yg+vﬁ+5§—2+a&@+05wg+u&ﬂﬁ—swﬂ

' (4.57)
where -; is a positive constant. We note that the choice of weighting on the
path parameters in (4.57) is not unique. The time derivatife of (4.57) along
the solutions of (4.45), {4.50), (4.53) and {(4.56) is

»
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: kyex? kQ'I"Jd'w'yz- k32 >
Vi = —‘Z ( L PO " Tes 4 tet k.;,vvf,v + k5,:w§£) + Z@n-l'

A“Az' Az' i=1
Z¢2hst + Z 24.’22;353 + Z 7&(3: - 30)(31 +w; — 30) (458)
i=1 i=1 j=1
where
1] ‘- — -1~ 3 k txet (4] ‘-v
Dy = Zl v+ (1 k2§35e:'A1iA‘21'2) A31?lwi¢ei - m a¢es + 24iei +
N
da Ory; Aryi
yyite; — = (Yoi Wy + U) Vei= w——TejWjVes — = WjVes +
wiWlei FZ! (3% (E.v'ez ;) Bye; Wi Obe; i Ve
Bcrm Ao - Oevi .
3 (yej*wj + Uj)weg_ - mxejijﬁ -~ 3¢: w,we,) (459)
Tei _ k2iUgiVei | Ueilei, . (7
Po1s = — =By 008(Be;) ~ + sin{de;) cos{ay,,) +
214 A i C08(Pei) A1 B9 An (sin(¢bes) cos( Bei)
N . kﬂiﬂd:
(cos{@e;) — 1)sin(ay ) + m(vd;w, sin(des)(1 + 2%,) +
ToiYeilldiws COS(Q”ei})‘g’ei 4 60)

i Ba,,,v - a da g
gp221‘.}' = Z "%vdg COG(¢eJ Yo + Bue » ‘Udj Sm(¢e3 Wei — wd;”e:

j=1 Ode;

Boi . . Ooryive, )
Ty sin(des )0ei ~ =———WaiVe;
ayej dj ( .?) aéej (7]

(4.61)

Devyi _
- 3;]:_: Ugy CDB(Q%;;)%,: +

@32;,:3,-, we can write {(4.58) as

||[V]2

N N . N
By noting that Y~ 3 $23i58; = E

i=l j=1

. N klgx k?'f’diwiys' k:”,&ﬂ‘ 0 . N
ei P ei i
Vl = — z ( A + Al-jdgi + Az- + kdi'v“ + kSi'wgi) + Z¢‘“+

i=1

N
> (®a + quzzﬂ)s, + Z Yi(s: — 50){8: +wi — o). (4.62)

i=1 i=1

From (4.62), we can choose
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N
w; =8, & = —e,tanh(Pa; + Z‘Pzzji +%i(8: — s0)) (4.63)
i=1

where £, is a positive constant to be selected later. We now can choose 4
in two cases: the first case is with formation feedback and the second case is
without formation feedback as discussed previously.

For the case with formation feedback, s can be chosen as
dp = wolt)(1 —Xle_-xz(t_to))(l —X3 tanh(xsrzme +yzryye +¢{F¢¢e)) (4.64)

where wp(t) is a strictly positive and bounded function. This function specifies
how fast the whole group of robots should move, since the forward speed of
the center of the virtual structure is given by vap = \/a::fo(so) + y.5(s0)%0.
The weighted positive definite matrices Iy, I}, I'y determining the tracking
errors are taken into account in the formation feedback. All the constants
X1, X2 and x3 are nonnegative but x1 < 1 and xs < 1. If x1, x2 and y3 are
positive, the choice of § in (4.64) has the following desired feature; when the
tracking errors are large, the virtual structure will wait for robots; when the
tracking errors converge to zero and the time increases, $9 approaches wy(t),
i.e. the center of the virtual structure moves at the desired speed. Now we
choose the constant £, such that

€s <wp(t)(1 = x1}(1 — x3) (4.65)

then we have

8, 3 dow; = —&s t‘a'nh(¢’2h + 2 4522;1 + '7:(31 - 30)) + wO(t)(]-_

e e-w)(1 - Xa tanh(aT 4, ze + yT Lyve + &7 Tpde))
>~ +wolt)(1 — x1)(1 — x3)} > 0.
(4.66)
For the case without formation feedback, ¢ can be simply chosen as

' so = wi(t) (4.67)

where wj(¢) is a strictly positive and bounded function, which again specifies
how fast the whole group of robots should move. It is noted that in this case,
the controls 7. and rwm are significantly simplified in the sense that all the
terms in the sum Zi—l‘ see (4.52}, (4.55) and (4.63) are zeto.

Remark 4.5. In the case with formation feedback, i.e. éo is chosep ad in (4.64),
each robot requires the path parameters, measurements of position anq orier.-
tation of itself and all other robots in the group be available for feedback, In
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the case without formation feedback, i.e. $g is chosen as in (4.67) each robot
requires only the path parameter and measurements of position and orien-
tation of itselffor feedback. The trade-off is that the mobility of each robot
is taken into account for the case with formation feedback but is not for the
case without formation feedback. For example, if some robots get saturated
or disturbed, formation cannot be achieved in the case without formation
feedback.

Substituting (4‘63) into (4.62) yields

- __Z kls-"v"e; kz‘tvd‘lwlyet + k3i$’2ei b a2+ kew? +i¢ .
i=1 A%: AhAgt d%l e o et i=1 r

- N
&, Z (@o1: -+ Z¢’22ji +7il(s: — so)) tanh(@a1e + D Bazgs -+ %ils: — s0)).

(4.68)
We now state the main result of this chapter in the following theorem.

Theorem 4.6. Under Assumption 4.1, the control inputs 1,; and 7, given
by (4.27), (4.52) and (4.55), the observer (4.19) and ({.22), and the path
parameter update law ({.63) solve the control objective (4.5) and (41.6).

4.5 Proof of Theorem 4.6

Before prove Theorem 4.6, we note, upon tedious completion of squares, from
(4.59) and (4.23) that

T

1D1:) < enslllfll® + U X:?) + e (v + wd) (4.69)

where ¢1; is some (large) positive constant and eo; is an arbitrarily small
positive constant. Now, to prove Theorem 4.6, we consider damped and un-
damped cases separately.

4.5.1 Damped case

For this case, we consider the following Lyapunov function candidate

N
Va1 = Vi + pos Z Voui (4.70)

i=l

where po3 is a large enough positive constant to be specified later, and Vg,; is
given in (4.28). Using (4.29) and (74), the derivative of (4.70), satisfies
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k&

al ki Baiwip? ka2 2 2
2 (—z‘“ + SR a s a4 (ke —e2)vg + (ki — 52:')“’,;,5) -

15—
N
Z (215 + Z ¢22_'."1 + vi(s: — o)) tanh(P2y; + 2 45223: + (8 — 80))—
= J—

‘_/_,1 = (03 rm{(Qors) — €13) 17ll* = (o3 Am (Qozs) — €15

X || -

(4.71)
We can now pick the constants ugs large enough and £o; small enough such
that ks —e2: > 0,  ksi—e2: > 0, posAm(Qori) —21i > 0, po3Am{Qozs) —€1s >
0. Then the inequality of {4.71) means that V5)(t}) < 0, ie. (2eilt), yeil?),
¢ei(t)t ves'(t)& Wei (t)a ﬁi(t)a Xi(t)' si(t) - SU(t))s is bounded. Applylng Babar-
lat’s lemma to (76) results in

tl_i.n‘;o@ei(t)ﬁ yet’(t): ¢ei(t): Vei (t), wei(t)v ﬁi(t): X’s(t)) =10

N N
tl_l’l'{.lo(z (P21:(t) + Z‘Pzzje(t) + %i(s:(t) — s0(t))) tanh(P21(t) +
i=1 5=1
N
D Bazs(t) +%(si(8) — soft))) = 0. (4.72)
=1

On the other hand, from the first equation of (4.72), (4.60) and {78), we have

N
Jim (@o1(8) + 3 @a24(2)) = 0. (4.73)

i=1
From this fact, the second equation of (4.72) implies that
t&s&(s;(t) -~ spfth) =0 (4.74)

which completes the proof of Theorem 4.6 for the damped case.

4.5.2 Un-damped case,.

In this case, we consider the Lyapunov function

N
Vi = poaVa + D Vou (4.75}

i=1
.

where Vog, is given in (4.32), and uo4 is a positive constant-to be picked later.
We temind the reader that here we do not assume w;(t) is bornded hy war;
as in the proof of Theorem 4.3. To prepare for calculating the derivative of

1
Ll



88 4 Formation Control of Mobile Robots with Unlimited Sensing: Output Feedback

(4.75), we kere do not use the bound of —i7 G;(m;) X; as in the last inequality
of (4.36}. instead, we.proceed as follows

—i% Gy(mi)Xi = ] Cus(m)biXi = =] Gl ) (i + ) X,

= 7 Ga(ms) (s + wes + 05) X

= =7} Gps(mi){aws + )X — 7] Gra(m)we: X,

< Aus(o+ oo (#)) ((1/46015) Il + o | ) +

posesiwdi + 1/ (4paacs) A4,65,(0) 17 (4.76)

where o is defined in (4.49), and €3, is a positive constant to be picked later.
By using the first three inequalities of (4.36) and (4.76), differentiating both
sides of (4.75) yields .

N _ -

. kux?  koBawsy?  kad?

Vaz € —pog 2 ( A}ﬂ T R g kvd (ks — 3}l ) -
i=1 i

YY) 43,

N N N
E;’Z (Pari + 245223'.! + 71:(s¢ — 80)) tanh(Pyy; + 295223% +
=1 =1 =1
N .2
yilsi = s0)) = > (ke 1 ]1” + ki [| X[ ) (4.77)
=1

where

ki = poridm{Qors) — pozi(1/(801:) Az + Al +
Yoibo: (#))({1/4601:)) + Azi) — 1/ (dpsoae ) Adi: (@),
kri = pozi (A1 ~ o1 Azi + Asilors)) (4.78)

A closed look at (4.78) shows that we can pick small enough 63;, Hod, o1 and
large enough p1; such that

kei = kg;y kai = ky; t4.79)

where &k}, ¢ = 6, 7 are strictly positive constants. From {4.77) and (4.79), using
the same arguments as in the damped case, we complete the proof of Theo-
rem 4.6. Finally we note that all of the constants goy;, to2i, 03, #oa, o01i» €13
£24, £3; ar= used ouly for the proof. We do not need to choose them to imple-
ment the proposed controller.

4.6 Simulations

In this section we simmilate formation control of a group of three icentical
mobile robots to illusirate the effectiveness of the proposed controller. The
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physical parameters are taken from Section 1.3.1, Chapter 1. The observer
and control gains, the initial conditions, and the parameters involved the
update of the path parameters are as follows:

m(0) = [~500]", m(0) = [;5 5017, m©0)=[-5-50]", i

w1{0) = w2{0) =w3(0) = [00] ", #(0)=[000]", X:(0)=[00]",

POH = diag(]-v 1! 1)! Kﬂli = diag(l, ls 1): -PD21' = diag(ls 1}&

Koo = (Lim)Q7 )T, 5:(0) = 2, kyi =1, kgy = 05;ka; = 1.5, kyy = 2,

ksi = 2! = 1» ri = di&g(l. 191}\ wo = 0.2, X1=Xx2= 0! X3 = 0'5} &€y = 0.1
' {(4.80)

The reference path of the center of the virtual structure is chosen as Ip(sp) =

(sg,0). The distances from the place-holders to the center of the virtua! strue-

ture are cfiosen as

" L(@ao(s1), van(s1)) = (0,0),
2 (%an(s2), vao(52)) = (3,8 + Bcos(0.5s2)), (4.81)
i3(zao(s3), yao(ss)) = (3, —8 + 3sin(0.5s3)).

These choices mean that the first place-holder coincides with the center of the
virtual structure which moves on a straight line, and that the other two place-
holders move on two sinusoidal paths. The robots’ position and oriertation,
and path parameter errors are plotted in Figure 4.3. The path tracking errors
and linear velocities are plotted in Figure 4.4, It is seen from these figures
that each robot asymptotically track its own path generated by the virtual
structure, and formation is successful, see plot of the path parameter errors.
In addition, Figure 4.4 (bottom subplot) indicates that the first robot moves
with a constant speed while the other two robots move with varying speeds
to maintain the formation.

-

4.7 Notes and references

This chapter aims at a combination of the virtual structure and path-tracking
approaches to derive a control system for formation control of a group of
unicycle-type -mobile robots. The conventional virtual structure approach is
modified so that the formation shape can vary, i.e. the robots can change their
relative positions with respect to the center of the virtual structure during the
manoeuvrz. The technique in Chapter 2, Section 2.2.2 was modified to design
a global output feedback controller for each robot based on a global exponen-
tial/asymptotic observer. The output feedback controller is designed in such
a way that the derivative of the path parameter is left as an additional control
input to synchronize the formation motion. The control systgm is derived in
four stages: first, the dynamics of the virtual structure are defined; second, the
motion of the virtual structure is translated into the desired motion for each
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o.s“ﬁ\ | |

Q 5 10 15
Time [s)

Fig. 4.3. Top: Robot position and orientation in (x,y) plane; Bottom: Path param-

3
eter errors in the form of 3 1/(s: — 50)2.
1

robot; third, output feedback tracking controller for each robot is derived;
and finally, formation feedback is introduced from each robot to the virtual
structure, The material in this chapter is based on the work in [51].

"
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— Robot 1
‘= Robot 2
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Time [si
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Fig. 4.4. Top: Tracking errors in the form of /22, + yZ; + ¢%;; Bottom: Robot linear
velocities v;.
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Bounded Formation Control of Multiple
Agents with Limited Sensing

A oonstructi;‘f?e method, which is the base for the next two chapters, is pre-
sented to design bounded cooperative controllers that force a group of N
mobile agents with limited sensing ranges to stabilize at a desired location,
and guarantee no collisions between the agents in this chapter. The dynamics
of each agent is described by a single integrator. The control development is
based on new general potential functions, which attain the minimum value
when the desired formation is achieved, and are equal to infinity when a col-
lision occurs. A p times differential bump function given in Section A.7T is
embedded into the potential functions to deal with the agent limited sens-
ing ranges. An alternative to Barbalat’s lemma given in Section A.6 is used
to analyze stability of the closed loop system. Moreover, the controlled sys-
tem exhibits multiple equiltbrinm points due to collision avoidance taken into .
account. We therefore investigate the behavior of equilibrium points by lin-
earizing the closed loop system around those points, and show that critical
points, other than the desired point for an agent, are unstable. The proposed
formation stabijlization solution is then extended to solve a formation tracking
problem.

5.1 Problem statement
We consider a group of N mobile agents, of which each has the following
dynamics

gi=u,i=1,.,N (5.1)

where ¢; € R® and u; € D C B are the state and control irput of the agent
i, We assume that n > 1 and N > 1. Here, we treat each.agent as an au-
L]

tonomous point. »
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Contr?l #bjective: Assume that at the imitial time {5 > 0 each agent
starts at a different location, and that each agent has a different desired lo-
catioh, i.e. there gxist strictly positive constants €; and €2 such that for all
(£, €{1,2,...N}i#J

lig:(t0) — a;(tolll = e,
llgis — gisll 2 2 (5.2)

where ¢;5,7 = 1,.., ¥, is the desired location of the agent i, Moreover, the
agent ¢ can only measure its own state and can ounly detect the other group
members if these members are in a sphere, which is centered at the agent
and has a radius of K, larger than a strictly positive constant. Desigh the
bounded control input u; for each agent 7 such that each agent asymptotically
approaches its desired location whtle avoids collisions with all other agents in
the group, i.e. for all ({,7) € {1,2,... N} i#£ 1> 20

flus() < 4,
tl_i‘l‘glo(%(t) - g7} =0,
lgi(t) - q; ()} = ea {5.3)

where § is a strictly positive constant and ¢3 is a positive constant.

5.2 Control design

Consider the following potential function

N
o= (vi+058) ~ (5.4)

i=l

where +; and 3; are the goal and related collision avoidance functions for the
agent i specified as follows:

-The goal function is designed such that it puts penalty on the stabilization
error for the agent, and is equal to zero when the agent is at its final position,
A simple choice of this function is

¥ = 0.5)lg: — gig|)® (5.5)

-The related collision function g; is chosen such that it is equal to infinity
whenever any agents come in contact with the agent i , i.e. a collision occurs,
and attains the minimum value when the agent ¢ is at its desired location
with respect to other group members belong to the set N; agents, where N; is
the set that contains all the agents in the group except for the agent #. This
function is chosen as follows:
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a3; = Z Bij (5.6)
FEN:
where the function 8; = G5 is a function of ||g;;||2/2 and [lg;;[I2/2, with
Giy = ¢ — g5 and ¢y = g;¢ — g55, and enjoys the following properties:

DB =0 if gzl = llgissll,

2)Bi;; >0 if gyl # ligszsll and 0 < lgis]| < by,

3) Bijligiy =0 = 00

4) B3l t=lacss 1 = 0 Fijliacsli=tasstt Z 05 Biglygisu=0 = 00,

5)Biy < pn, 18551 < pzs 1855050551 < 13, ¥ 24 < sl € s,

6)8i; =0,8;=0,85=0 if fgi;ll = by,

7) By is p times differentiable with respect to g;; (5.7)

where b;; is a strictly positive constant such that &; < min(R;, Ry),

L v -
Bi; = mﬁ%m and 8f; = am%f[‘g‘?w, and 4,1 = 1,...,5 are positive con-

stants, and p > 2 is a positive integer.

Remark 5.1. Properties 1), 2) and 3) imply that the function §; is positive
definite, is equal to zero when all agents are at their desired locations, and
is equal to infinity when a coallision between any agents in the group oceurs.
Property 4) and the function -; given in (5.5) ensure that the function ¢
attains the (unique) minimum value of zero when all the agents are at their
desired positions. Property 5} is used to prove stability of the closed loop
system. Property 6) ensures that the collision avoidance between the agents
i and j is only taken into account when they are in their sensing ranges.
Property 7) ensures that 3;; is at least twice differentiable with respect to gy;.

There are many functions that satisfy all properties of 3;; given in (5.7).

An example is p
o llal*/2 | )2
P ._((Iltsfe'ijP/?J2 * U273 ~ (et ) =
hz‘j ("(Rj "2/2‘ ﬂf,—/l 535/2) (5.8)

where hi;(l|g:5)%/2, a%;/2.b};/2) is 8 p (with p 2 2) times differentiable bump
function defined in Definition A.28, The derivative of  along the solutions of
{5.1) satisfies

N * .
p=3 2y S X

where
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Y £ =g~ qiy + Z Btz (5.10}
- - JEM,

From (5.9), a bourlded control u; for the agent ¢ is simply designed as follows:
U; = —C'p(ﬂi) (511)

where ¢ is a positive constant, and ¥(2;) denotes a vector of bounded func-
tions of elements of £2; in the sense that ¥(2%) = [Y(2}) ¥(2?), ..., v(12),
e ¥(20)]7 with £2¢ the % element of £2;, i.e. 2 = [2} §22..42%...07|7. The

function ¢(x) is a scalar,"differentiable and bounded function, and satisfies

1) |@(z)| < My,
2) Yx)=0 ifzx=0, x¥(z)>0ifz#0, 5.12)
3) W(-2) = —p(x), (& - y)b(z) — ¥(¥)] 2 0, (8.

4) |82 < My, |2 < M, HE, o =1

for all z € R,y € R, where M,, Ms, M3 are strictly positive constants. Some
functions that satisfy the above properties are arctan(x) and tanh(x). Indeed,
the control u; is bounded, i.e. [[ui(t)] < ev/RMy :=8¥t >t = 0.

Remark 5.2. When {2; defined in (5.10) is substituted into (5.11), the I** ele-
ment of the control u; can be written as u} = c¥( — (¢} — ¢} ;) — Xjen, B5)
with qﬁ, qgf and qﬁj being the {** elements of ¢, gip, and ¢;;. The argument
of ¥ consists of two parts: —(qf ~ g¢f;) and — 3_.cp, Af;4i;- The first part,
—(¢i — g};), referred to as the attractive force plays the role of forcing the
agent to its desired location. The second part, ~ 3y, Bi4i;, referred to as
the repulsive force, takes care of collision avoidance for the agent i with the
other agents. Moreover, the control v; of the agent ¢ given in (5.41) depends
on only its own state, and the states of other neighbor agents j if these agents
are in a sphere, which is centered at the agent and has a radius no greater
than R; because outside this sphere 8}; = 0.

Now substituting (5.11) into (5.9) results in
N
o =—cy_ 027U (). (5.13)
i=1

Substituting (5.11) into {5.1) results in the closed loop system
G =—cP(I),i=1,.,N. (5.14)

We now state the main results of this chapter in the following theorem.
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Theorem 5.3. Assume that at the initial time ty > 0 each agent starts at ¢
different location, end that each agent has a different desired location, i.e. the
conditions given in (5.2) hold, the bounded controls given in (5.11} gugrantee
that no collisions between any agents can occur, the solutions of the closed
loop system (5.14) exist and the agents asymptotically approach their desired
positions (o set of equilibria) defined by ¢ip,i = 1,..., N. Asymptotic conver-
gence to the set of equilibria is "generic” (for generic initial conditions} and
not global as one may erroneously think.

5.3 Proof of Theorem 5.3

To prove Theorem 5.3, we first prove that no collisions between the agents
can occur and that the agents asymptotically approach their target points or
some critical points. Next, to investigate stability of the closed loop system
(5.14) at these points, we linearize the closed loop system at these points. We
then prove that only desired target points are unique asymptotic stable and
that other critical points are unstable,

+Proof of no collisions end existence of solutions. From (5.13) and prop-
erties of the function ¢ , see (5.12), we have ¢ < 0, which implies that
wlt) < o), ¥t > to. With definition of the function ¢ in (5.4) and its
components in (5.5) and (5.6), we have

[7,(:) +05Y f()] < [%(to +05Y Byl)]  (515)
i=1

JEN; JeN;

for all ¢ > to > 0. From the first condition in (5.2) and Property 5) of 5;;, we
have jen, Pij(to) is smaller than a strictly positive constant. Therefore the
right hand side of (8.15) is bounded by a positive constant depending on the
initial conditions. Boundedness of the right hand side of (5.15) implies that
the left hand side of (5.15) must be also bounded. As a result, Bi;(t) must be
smaller than some positive constant depending on the initial conditions for
all t > ¢y > 0. From properties of 3;;, see (5.7), |g:;(t)|| must be larger than
some positive constant depending on the initial conditions denoted by e3, i.e.
there are no collisions for all ¢ > ¢ > 0. Boundedness of the left hand side
of (5.15) also implies that of [lg;;(t){| and Jjg;(¢)|] for all £ > £ > O, i.e. the
solutions of the closed loop system (5.14) exist,

+Equilibrium points. We will use Lemma A.24 to find the equitibgium
points, which the trajectories of the closed loop system (5:14) copverge to.
Integrating both sides of (5.13) yields A

E
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LY

v [ ” p(t)dt = p(0) ~ plo0) < 9(0) (5.16)

where #{t) = ESLOTHE() = eI T, QUOw(RHY) with
(t) the I** element of §2;(¢). Indeed, the function ¢(t) is scalar, nonneg-
ative and differentiable. Now differentiating ¢(t) along the solutions of the
closed loop system (5.14) gives

d¢(t) Ci : (w(gt aggf)) Qg{ _ () + > [ﬁ,’-j

i=11 JeN;

() + )+ Bgaly Y -wia +we))] ) )
. k=1

where quj is the I** element of ¢;;. Since we have already proved that [g;; (¢} is

bounded and is greater than a positive constant for all ¢ > ¢y > 0, using prop-
erties of 4 and §;; in (5 12) and (5.7) we have: 1) |[¢($2})/52% + p(52)/082 <
o, 2) lﬁul < o2, 3) | qajqajl < 03, and 4) m‘ﬂf’(m)'l‘ﬂjﬁ’(ﬁi) 2 ﬂ;‘l}"(Q)'i‘
.f?’gb(.f?‘), with oy, 02,3 positive constants. Applying these inequalities to
(5.17) results in

N n
]%} < Mee Y)Y () = Mug(t) (5.18)

i=1 =1

where My = a4(1 + 02(N = 1) + 2{o2 + gan)). It is clear from (5.18) and
(5.16) that the function ¢(t) satisfies the conditions of Lemma A.25. Hence
lim¢—eo #{t) = 0, which implies from the definition of ¢ that
Jim arow() =0vi=12,.,N. (5.19)
—00

Thanks to Property 2) of the function v, see (5.12), the limit equation (5.19)
implies that

Jim 20) = tim [a(t) - as + 3 BiBlas0] =0 (520

FEN,

for all i = 1,2, ..., N. The limit equation (5.20) implies that the state q(t) =
[af (&) aZ (t),.... g% (t))]T converges to the manifold M of (5.14) contained in
E = {g € RV |p=0} where 2 = (2] 0T, ..., 2F]7, i.e. on the surface
where ¢ = 0. This surface is continuous because we have already proved that
llgsill > 0,¥(% 5) € {1,2,.... N}i # j, i.e. §}; is continuous, see Properties of
;5 in (5.7). As the time { goes to infinity, it can be verified that one solution
of (5.20) is g5 = [q]; o3;.....q% ;|7 since BYlugc;l=(a;s) = O (Property 4) of
Bi;), and other solutions are denoted by g. = [¢1; ¢2., ..., q%JT. It is noted
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that some elements of g. can be equal to that of gy, However, for simplicity
we abuse the notation, i.e. we still denote that vector as ¢.. Indeed, the vector
¢ 1s such that

Qilgmq. = (@ — @i + Z B%5)
FEM;

=0 (5.21)
=4

for all { = 1, ..., N. Next, we will show that ¢y is stable and g, is unstable, by
linearizing (5.14) at these points.

+Properties of equilibrium points. The closed loop system (5.14) can be
written in a vector form as § = —c¥,(g,q5), and ¥,(g.q5) = [T(2),
e T (), . T (23)]T. Therefore, near an equilibrium point g,, which can
be either g5 or g, we have

"

-

g =—c OWq(q,9s)/04|,_, (@ — %) (522)
where
An Ay eer oo AN
qu;-qf) | Ay - B Ay (5.23)
q C
AN]. ......... ANN

with 4y = ﬁg%%‘l %{F, (i, 7) € N, where N denotes the set of all agents in the
group. A simple calculation shows that foralli=1,.. ,N,jeN;, j #4

an,
? - (1 Y ﬁ;j)fn + Y Blhagah,

i€N; FEN;

-

8!) + M
= “ﬁ:jfnxn - ﬁszijqa?;- (5.24)

dq;
Let N* be the set of the agents such that if the agents i and j belong to the

set N* then |lgi;|| < bi;. Next we will show that gy is asymptotically stable
and that g, is unstable.

- Proof of g5 being asympiotic stable. Using properties of 8;; and ¢ in (5.7)
and (5.12), we have from (5.24) that foralli=1,...,.N,i#j:

o (1%) B4 # T
I =h,ot =kt ) Bigassals
39‘ ?=Q} aq‘l =qs jEN: -~ .
61’2;- »
Bar =0\ =8 1G5 %57 (5.25)

=4r
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-

where ﬁwf 4

“?qu —QlJf and ’Bijf = |q:j _Qijf
function candidate Vi = 0.5lg — g¢I? whose derivative along the solutions
of the linearized clesed loop system (5. 22) with g, replaced by gy, and usmg

(5.25) satisfies Vy = —c Z, = llas—ass 2 "'CZ(M)EN a5 it (qijf(q """ f))

Since B3;;, > 0, see Property 4) in (5.7), we have Vi< —¢ Zwl llg: — q,f||9 =
—2¢Vy, which implies that g5 is asymptotically stable.

. 'We consider the Lyapunov

- Proof of g, being unstable. Again using propemes of ﬁ,, and 1 in (5.7)
and (5.12), we have from (5 2) that forall i =1,..., N,i £ 7

o (1) . ask ’
6—.9,', _ =T, _‘ ~ = (1 =+ z ﬁgjc)fn +
I=9c . 9=qe FEN;
T B-Qi - I
E ﬁ;;cQ‘jCQ1'1jcs Ba- = _ﬂ;jc - 5.'5.:%;‘.:‘1?;1: (5.26)
FEN; 95 {ga,
where gije = Gic = jer Bije = Byl _,,,. 4 Bije = B, _, . Since the

related collision avoidance functions f3;, see (5.6), are specified in terms of
relative distances between agents and it is extremely difficult to obtain g,
explicitly by solving (5.21), it is very difficult to use the Lyapunov function
candidate V, = 0.5)|q — ¢.|| to investigate stability of (5.22) at g.. Therefore,
we consider the following Lyapunov funetion candidate

Ve =0507 - ¢l (5.27)

where § = [of. 483, .-.6fv, 433, - 4> -0 451 ] 80 G = [45c: 020 0T ner
Q3acr s Qaner -Gy —1,wel - Differentiating both sides of (5.27) along the so-
lution of the linearized closed loop system (5.22) with g, replaced by g, gives

s

Vo=-c Z lgis = gisell® — ¢ Z (14 NBe)

(i.5)eM\N" (i,5)€N"

2
"‘-i'ij - Qijcﬂz —-cN Z uc(quc(Qsj qijc)) (5.28)
(i,5)enN"

where ¢ # j and (5.26) has been used. To investigate stability properties
of §, based on (5.28), we will use (5.21). Define ;. = f& — 4., ¥(i,7) €
{1,...,N}, i # 7 where £2;; = 2i]q=q. = 0, see (5.21). Therefore 24, = 0.
Hence 3, nene a5 2%;c = 0,i # j, which by using (5.21) is expanded to

Z (0 (@sje — @ijg) + NBijelizolise) =0
(. )EN"
= Y (U +NBahetse= Y, @hetis (5.29)
(4,3)EN" {i,5)EN:
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Fig. 5.1. Hlustration of equilibrium points.

where ¢ # j. The sum 37 n qlic:5 is strictly negative since at the
point where ¢;; = g5, V(i,5} € N*,i # j (the point F in Fig. 5.1) all
attractive and repulsive forces are equal to zero while at the point where
@i = Gije V(3,J) € N*,i # j (the point C in Fig. 5.1) the sum of attractive
and repulsive forces are equal to zero (but attractive and repulsive forces are
nonzero). Therefore the point where g;; = 0, V(3, ) € N*, 4 3 j (the point O in
Fig. 5.1) must locate between the points F and C for all (4, §) € N*, 3 # ;. That
is there exists a strictly positive constant b such that 35, . en. ¢Fcti7 < —b,
which is substituted into (5.29) to yield

Z (1+ NBalemss < ~bi # j. {5.30)
(i.5)eN-

Since q,jcq.s.c > 0,V(i,5) € N* £ # j, there exlsts a nonempty set N** C N*
such that for all (z,5) € N**,é # 4, (1 + NG[; ) is st.rlct.ly negative, i.e. there
exists a strictly positive constant ** such that (1+ NGj;) < —b*", V(i,j) €
N**,i 5 5. We now write (5.28) as

V.= —C[ Z e — quell* + Z (1+ NBj;) x

(i,3)EN\N* (§.F)EN\N*
"Q‘ij "q:;c" +N Z uc(ch & — Q‘JC)) ] ¢
(i.j)eN~ - ,
* y
e > (1+ N85 les - q‘,cll . {531

(i.5)ene
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where i % j¥ We now define a subspace such that Gj — Gije =0, V(i,5) €
N\N** and g7} (g;; — ¢iic) = 0, ¥(i,5) € N*,i # j. In this subspace, we have
-+

V.=05 z hagis —~ gizell®
(£.)6N~

V.= —¢ Z (1+ Nﬁ:jc)li%'j - Qs‘jc“z > 2cb™*V, (5.32)
{i.g)eH-

4

where we have used {1 + N3 )} < —b**, V(i,5) € N**,i # 5. Clearly (5.32}
implies that N
Z llgis (8) = gssell 2 Z ligis (20) — gugeliec® =% (5.33)

(1. yEN"" (1. J)EN"

for all i # 4, t 2 t3 = 0. Now assume that ¢, is a stable equilibrium point of
the closed loop system (5.14), be. limy—oo [jgi(t) — Gicf]| = di. Vi € N with
d; a nonnegative constant. Note that N** ¢ N, we have limy— o ||:(t) —
giell = di,¥i € N**, which implies that limeoo 3 ¢; syenee 19i5(8) = @il =
d**,¥(4,j) € N**,i # j with d** a nonnegative constant, since ¢;; = ¢; —g; and
Gije = 9ic—Gjc- This contradicts (5.33) for the case 37, yenes 1955{t0) —gijell #
0, since the right hand side of (5.33) is divergent (so does the left hand side).
For the case 3-, sen-« 105 (t0) — gijell = 0, there would be no contradiction.
However this case is never observed in practice since the ever-present physical
noise would cause [|¢;;(t*) — gizelf for some (3,7} € N**,¢ # j to be different
from O at the time £* > f5. We now write (5.33) as

3 hes® -l 2 Do Hau) — quelle® ) (5.34)

(i.j)eN* (i,)EN"" -

#*

foralli#£j, t 21" 2t 2 0. Since E{,-‘j)eu.. llg:5(£*) — gizel] # O, the right
hand side of (5.34) is divergent (so does the left hand side). This contradicts
limy o E(s.j)eN" lgis(t) — gijell = d**,¥(¢, §) € N**,4 £ j. Therefore g, must
be an unstable equilibrium point of the closed loop system (5.14). Proof of
Theorem 5.3 is completed.

5.4 Simulations

We carty out. a simulation with n = 2, N = 30. The agents are initialized
randomly in a circle, which is centered at the origin and has a radius of
1. The desired formation is specified in shape, location and orientation as
@iy = Ryfsin{( - 1)2n/N); cos((i — 1)2x/N)), i = 1,..., N with By = 10, i.e.
the desired formation is a polygon whose vertices are uniformly distributed
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on a circle, which is centered at the origin and has a radius of 10. All agents
have the same sensing range: R; = 2. The function 3 is chosen as in (5.8).
The parameters of the p times differential bump functions are p = 2,445 =
1,b;; = 1.5. The function 3 is taken as arctan. The control gain is chosen
as ¢ = 2. Simulation resuits are plotted in Fig. 5.2. It is seen that all agents
nicely approach their desired locations. Since the agents initialize pretty close
to each other, they quickly move away from each other then approach their
desired locations, see the top-left figure in Fig. 5.2, where the trajectory of
the agent 1 is plotted in the thick line, and agents 1 and 2 are indicated by
1 and 2. For clarity, only the control input #; = [u1z u1,)7 is plotted in
the top-right figure of Fig. 5.2, Noticing that the values of the continuous
controls wuy, and wy, are in the range o The bottom-right figure in Fig.

5.2 plots a "mean-product’ distance, distqy = (H(i.j)eN ﬂq,v,-H)N(N_l)/g,
the thick line, and the distances between the agent 1 and other agents in the
group. Clearly, no collisions between any agents occurred since disty is larger
than zero for all simulation time. The bottom-left figure in Fig. 5.2 plots the
functions B4, § = 2,..., N. It is noted that all 3,; vanish when ||g;]} are larger
or equal to 1.5. .

5.5 Extension to formation tracking

This section extends the results developed in the previous sections to solve the
problem of designing a control input u; for each agent ¢ that forces the group
of N mobile agents whose dynamics are given in {5.1) to track a moving De-
sired Formation Graph (DFG), in the sense that the DFG is allowed to move
on a common desired trajectory goq{s) with s being the common reference
trajectory parameter defined in the fixed coordinate system Ifp, see Fig. 5.3
and Fig. 5.4. We consider the DFG whose center moves along the common
reference trajectory g,q4(s). We assume that goq¢s) is regular in the sense that
it is single valued and its first derivative exists and is bounded. Since the
DFG under consideration is only representative, the center does not have to
be the "true” center of the DFG but can be any convenient point. When the
DFG moves along the trajectory g.q(s), the vertex i of DFG generates the
reference trajectory g;4(s) for the agent i to track. We limit our consideration
to two- and three-dimensional (2D and 3D} spaces, which are most common
in practice. The control objective is now stated as follows,

Control objective. Assume that at the initial time ¢y > 0, for all (i, j) €
{1,2,..N}, ¢ # j, s € R there exist strictly positive constalits e,, 3 and &3
such that - - ,

»

.
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Fig. 5.2. Simulation results.

llgi(ta) =~ gs{to)ll = &1, gia(s) — g5a(s)|| = 2.
dqials)

e < ™
1=, <es (5.35)

Moreover, the agent i can only measure its own state and can only detect
the other group members if these members are in a sphere with a radius of R;
larger than a strictly positive constant, and centered at the agent i, Design
the control input u; for each agent ¢ such that

Jim (g:(0) = gaa(s) = 0, lls(t) — g5 > e (5.36)
for all (3,7) € {1,2,...N},i # j, s € R, where ¢, is a positive constant.

Control design. Let us construct g;2(s). Let the moving coordinate sys-
tem T4, of which the origin O coincides with the center of the desired forma-

tion graph, move along ¢.q4(s). Let E,-d be the coordinate vector of the vertex
i of the DFG in the moving coordinate system. We then have
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Gia= J(9)(qia(5) — qoals)) (5.37)

where J(e) whose elements depend on 8g,4(s)/8s and is the rotational (in-
vertible) matrix, which describes the rotation of s with respect to I, and
is such that 8; < [|J{e)}| < &, &3 < ||J(®)7 |} < 84 with &§;,i = 1,..,4 strictly
positive constants, Therefore, by specifying ’é‘,—d in fTys, qig(s) in I for the
agent ¢ can be calculated from (5.37). Similarly, in JTx; the coordinate vector
of each agent i satisfies

Ti= J(o)(gi — d0a(s)). | (5.38)

‘From (5.37) and (5.38), we can see that the first two conditions in (5.35) imply
the following condition

179 (to)= @5 (o)l 250, 1| Tia ()= Tpa (M 2%2 (539

where £ and €2 are some strictly positive constants. Moreover, the tracking
control goal specified in (5.36) is achieved by designing the control u; for each
agent ¢ such that

Jim (4, (1)- Ta () =0, 1| 94 (0=, (1)) 2% (5.40)

where ¢4 is a positive constant, and by letting the DFG move along the
common reference trajectory via giving § sonie desired value.
Now differentiating both sides of (5.38) gives

—

q; =i (5.41)

where w; is the new control, and we have chgsen the control v; as

o

= Goa(s) + J(0) 7 (s = (0)(gs = goa(8)))- (5.42)

The problem of designing u; for (5.41) to achieve (5.40) under (5.39) is ex-
actly the same as the control objective in Section 5.1. Therefore, the control
design in Section 5.2 can be used directly to design a bounded control #; to
achieve the goal (5.40). After u; is designed, the actual tracking control u;
is calculated from (5.42). Let us give the expression of the rotational matrix
J(e) in 2D and 3D spaces.

—

Two-dimensionel space. Consider the moving coordmat,e frame, OXY at-

tached to the DFG, as shown in Fig. 5.3. The origin O coincides with the
center of the graph, and is on_ the common reference trajectory Goa(s) =

(oa(5) Yoa(s)]T. The OX and OY axes®are tangential and perpendicular to
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A v 'Moving coordinate system: I,
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Fig. 6.3. Formation coordinates in 2D.

the reference trajectory g,q4(s). Therefore the angle & between OX and OX
is calculated as # = arctan(y:,/x;), where o' 2 9o /0s. Hence the rotational

cos(f) sin(6) ] which is indeed invertible

matrix J(e) is given by J{#) = | ~ sin(6) cos(8)

for all # € R, and [|J{s}|| = 1.

"‘a

Three-dimensional space. Consider the moving coordinate frame, 82)?2 s
attached to the DFG as shown in Fig. 5.4. The coordinate frame 5 X, is
parallel to QXY Z . The origin O coincides with the center of the graph, and is
on the reference trajectory gog(s) = [Toa(s} Yoa(s) zea(s)]T- The OX, OY and
0Z axes coincide with the unit tangent vector t , the unit principal vector n

and the unit binormal vector b of the trajectory g.q¢(s) at the point O. These
unit vectors forma posntwely oriented tnple of vectors called the moving triad,
and are given by t = q M/Hq ‘oall, ne=t /]jt. |, b =txn, where x stands for
the vector cross product operation, (i, j, k) are the unit vectors of the OX YZ

coordmate Frame Let (€51, Ei2,£i3),¢ = 1,2, 3 be the directional cosines of O X

s OY and OZ with respect to the fixed axes OX, OY and OZ, respectively.
This notation means that if we denote (81, 852,8:3),4 = 1,2,3 as the angles
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oving frame coordinate system T,

, ved

Fig. 5.4. Formation coordinates in 3D.

between the axes OX, OY and OZ , and the axes OX, OY and OZ (see

Fig. 5.4 for representation of f11, #12 and 8;3), we have &; = cos(fy;), Vi,j €
& £12 &13

{1,2,3). The rotational matrix J(#} is given by J(e) = | £o1 £xn &2z |. It is
‘ éa1 &2 £33

shown in [52] that the determinant of J{e) is equal to 1, i.e. J(#} is globally

invertible, and [|J(s)]} = 1.

5.6 Notes an.d references

The main problem with the deceniralized approach, when collision avoidance
is taken into account, is that it is extremely difficult to predict and control
the critical points of the controlled systems. An interesting work addressing
geometric formation based on Voronoi partition optimization is given in {53]
but the final arrangement of the agents cannot be forétold due to lecality of
Lloy’s algorithm. Recently, a method based on a different navigaﬂon‘_function
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from [32] pEov'yied a centralized formation stabilization control design strat-
egy is propesed in‘[46]. This work is extended to a decentralized version in
[47). However, the potential function, which possesses all properties of a navi-
gation function (seé [32}), is finite (but its gradient with respect to the system
states can be unbounded) when a collision occurs. This complicates analysis
of collision avoidance. Moreover, the formation is stabilized to any point in
workspace instead of being "tied” to a fixed coordinate frame. In [32], [46]
and [47], the tuning constants, which are crucial to guarantee that the only
desired equilibrium peints are asymptotic stable and that the other critical
points are unstable, are extremely difficult to obtain. Moreover, the control
design methods (e.g. [36], [48], [37], [54]) based on the potential functions that
are equal to infinity when a collisionl occurs exhibit very large control efforts
if the agents are close to each other. The bounded formation controllers pre-
sented in this chapter require no spécialities of tuning design constants. The
material in this chapter is based on the work in [55], [56] and [57).
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Formation Control of Mobile Robots with
Limited Sensing: State Feedback

"u

Based on the material presented in Chapter 5, a constructive method is pre-
sented to design cooperative controllers that force a group of N unicycle-type
mobile robots with limited sensing ranges to perform desired formation track-
ing, and guarantee no collisions between the robots. Each robot requires only
measurement of position and velocity of itself, and those of the robots within
its sensing range for feedfack. Physical dimensions and dynamics of the robots
are also considered in the control design. Smooth and p times differential bump
functions given in Section A.7 are incorporated into novel potential functions
to design a formation tracking control system. Despite the robot limited sens-
ing ranges, no switchings are needed to solve the collision avoidance problem.
Simulations illustrate the results.

6.1 Problem statement .

6.1.1 Robot dynamics ‘

We consider a group of N mobile robots, of which each has the following
dynamics (see Chapter 1, Section 1.3.1):

&; = v; cos(dy)

¥ = visin(d;)

QSi =Wy

Mo = ~Ci(wi)w; - Diwi + Bimyi=1,..'N (6.1)

where all the state variables and parameters are defined in Section 1.3.1,
Chapter 1. .
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Fig. 671. Robot parameters.

»

6.1.2 Formation control objective

In this chapter, we will study a formation control problem under the following
assumption:

Assumption 6.1 1. The robot i, see Figure 6.1, has a physical safety cir-

cular area, which is centered af the point Py, and has a radius R;, and has
¢ circular communication area, which is centered af the point Fo; and haes
o radius Ry, see Fig. 6.2. The radius R; is strictly larger than R, + R;,
i=lL. . Nj#i

. The robot i broadeasts ils state, (x;, 1, @i, %), ond its reference trajectory,

Gid» in its communication area. Moreover, the robot i can receive the siates
and reference trajectories broadcasted by other robots §,j =1,...,N,j #1i
in the group if the points Fy; of these robots are in the communwatwn
area of the robot 1. ~

. The dimensional terms, (ri,a;,b;), of the robot i are known to the robot 1.

The terms involved with mass, inertia end damping, (my14, My2:, dagi, dogs
,¢i), of the robots are unknown but constant.

. At the initial time to > 0, each robot starts at a location that is outside

of the safety areas of other robols in the group, i.e. there erists a strictly
posttive constant £y such that

lg:(to) — qilta)ll — (B + B;) 2 ey, Y@, j) € (1,2, N), i#j  (6.2)

where g; = [371 ya] T

. The reference trajectory for the robot i is gig = [x,.g yial? , which is gener-

ated by
Gid = Qod(50d) + ki (6.3)
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where Qod(Sod) = [Tod(Sod) Yod(30d))T is referred to as the common refer-

ence trajectory with s,q being the common trajectory parameter, and l; is
a constant vector. The trajectory goq satisfies the following conditions

tl_l'rgo ugd(t} #0, ugg = vV ‘T?d + y!o?i $od:
v Zoa + ¥ > 0, |uoa(t)] < uge® (6.4)

where x, = g%::, Yoq = %’gﬁ and ulfT is o strictly posilive constant.
Moreover, t,q, Uog are also bounded, The constant vectors {;,1 = 1,2, ..., N
satisfy

flte = Gl — (B + B;) 2 ea, Y(E3) € (L2, N), i #F  (65)

where 4 18 @ strictly positive constant.

¥ -~ "Robot i

Fig. 6.2. Formation setup.

Remark 6.2. ltems 1) and 2) in Assumption 6.1 specify the way each robot
communicates with other robots in the group within its communication range.
In Fig. 6.2, the robots i and i — 1 are communicating with each other since
the points Fy;—1 and Po; are in the communication areas of the robots # and
i — 1, respectively. The robots 7 and ¢ + I are not commumcat.mg\mth each
other since the points Py, and Fy ;4 are not in the commumcﬁtlop areas of
the robots ¢ + 1 and ¢, respectively. Similarly, the robots ¢ — 1 and i 4+ 1 are
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not commupicXting with each other. Item 3) makes sense in practice because
the dimensional terms cdn be easily predetermined while the terms involved
mass, ‘inertia and damping are often difficult to predetermine. Moreover, the
assumptions in this item mean that the matrix B; is known, while the matrices
M, D; and coefficients of the entries of the matrix C;(w;) are unknown but
constant. In item 35), the constant vectors I;,1 = 1, ..., N specifies the desired
formation configuration with respect to the earth-fixed frame OXY . The con-
dition (6.4) implies that the common reference g¢,q4 is regular and its velocity
tog, which specifies how the desired formation, whose configuration is deter-
mined by {;, moves along ¢,q, i8 bounded and satisfies a persistent excitation
condition, i.e. the desired formation always moves along the common refer-
ence trajectory, ¢,qg. The condition (6.5) specifies feasibility of the reference
trajectories ¢4, == 1,2,..., N (récall from (6.3) that giq — gja = l; —1;,Vi # j)
due to physical safety circular areas of the robots. Finally, all the robots in
the group require knowledge of the common reference trajectory guq since this
trajectory specifies how the whole formation should move with respect to the
earth-fixed frame QXY

Formation control objective: Under Assumption 6.1, design the con-
trol input 7; and update laws for all terms involved mass, inertia and damping
{114, M1, d114, d22; and ¢;) for each robot ¢ such that each robot asymptot-
ically tracks its desired reference trajectory g;4 while avoids collisions with all
other robots in the group, i.e. for all (3,7} € {1,2,...N}Li# 5t 2t =0

Jim (g:(t) — gialt)) = 0,
tl_i.f[.lo(éﬁ'i(t) - ¢ia{t)) = 0,
lla:(¢) — q; ()il — (B; + B;) = €3 (6.6)

-

where ¢;4(t) = arctan(y,;/x,,), and €3 is a positive constant. g

6.2 Control design

Since the robot dynamics (6.1) is of a strict feedback form [12] with respect
to the robot linear velocity v; and angular velocity w;, we will use the back-
stepping technique [12] to design the control input 7;. The control design is
divided into two main stages. At the first stage, we consider the first three
equations of (6.1) with v; and w; being considered as immediate controls. At
the second stage, the actual control 7; will be designed.

6.2.1 Stage I

Since the robot is underactuated, we divide this stage into two steps using
the backstepping technique. At the first step, the robot heading ¢; and the
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robot linear velocity v; are used as immediate controls to fulfill the task of po-
sition tracking and collision avoidance. At the second step, the robot angular
velocity wy is used as an immediate control to stabilize the error between the
actual robot heading and its immediate value at the origin. We do not use the
transformation in [14] to interpret the tracking errors in a frame attached to
the reference trajectories as often done in literature {e.g. [15}, [1], [16], [18])
to avoid difficulties when dealing with collision avoidance.

Step 1.1

Define

Die = Pt — g, Vig = V; — Qty, (6.7)
where ay, and o, are virtual controls of ¢; and v;, respectively. With (6.7),
the first twe equations of {6.1) are read:

G =i + 41 + Ay (6.8)

where ¢; = [Is ya] , and

_ |cos(ay,)
= [sin(zi)] Frir
A [ {cos(dic} — 1} cos{ay,) — sin(dse) sin(ay,) ] o
{sin(dic) cos{ag,) + (cos(bse} — 1} sin{ag, } [ ¢

o= [0 6)

To fulfill the task of position tracking and collision avoidance, we consider
the following potential function

-

en = Z(‘n +0.58) (6.10)

i=1

where ~y; and §; are the goal and related collision avoidance functions for the
robot ¢ specified as follows:

-The goal function is designed such that it puts penalty on the tracking error
for the robot, and is equal to zero when the robot is at its desired position. A
simple choice of this function is

¥ = 0.5(¢; — qialf?. . (6.11)

-The related collision function 3; should be chosen such ‘that it,is equal to
infinity whenever any robots come in contact with the robot 4 i.e. a collision
occurs, and attains the minimum value when the robot i is at its desired
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location wiEh vespect to other group members belong to the set N; robots,
where N; is the set that-contains all the robots in the group except for the
robot %. This functjon is chosen as follows:

Bi=) By (6.12)

FEN;

where the function 8;; = 8;; is a function of [ig;;|%/2 with G =i = 9 « and
enjoys the following properties:

1} Bi;=0 08;=0 ;20 if gyl = llaszall,

2} ﬂ,&j >0 if 0« [|q\,;. < bU,’

3) Bi=0 ;=0 0;=0 m =0 if |gsll 2 by,
4) ﬁ:‘j =00 if HQ’U i< (E +_ )

5) By S i 18] < 2, and |8iq5ai] < pa, V(B + By) < llasgll < by,
6) B is at least three times differentiable with respect to
lassl%/2 i€ gl > (R; + By) (6.13)

where gij¢ = ¢ia — ¢;4, bi; is a strictly positive constant such that (R, + R;) <
by < min(R;, R,, Ngizall); w1, p2 and ,u3 are positive constants; ,6’ ,6” and

7/ ave defined as follows: ,3'-, 00, Bf; = 00, A] = oo if |qi4ll < (R' + R}

L) a 3 88
By = W{fﬂﬁj‘ = gﬂm’ﬁa’y—p i}' = W if {lgis | > (B + By)-

Remark 6.3. Properties 1) - 4) imply that the function §; is positive definite,
is equal to zero when all the robots are at their desired locations, and is equal
to infinity when a collision between any robots in the group occurs, Moreover,
Property 1) and the function v; given in (6.11) ensure that the filnction pyy
attains the (unique) minimum value of zero when all the robots are zt their
desired positions. Also, Property 3) ensures that the collision avoidance be-
tween the robots ¢ and j is only taken into account when they are in their
communication areas. Property 35) is used to prove stability of the closed loop
system. Property 6) ensures that we can use techniques such as the backstep-
ping and direct Lyapunov design methods ([12], [58]) for control design and
stability analysis for continuous systems instead of techniques for switched,
nonsmooth and discontinuous systems ([59], {33]) to handle the collision avoid-
ance problem under the robot limited sensing ranges.

There are many functions that satisfy all properties of 8;; given in {6.13).

An example is
hij{llais|1%/2, a3 /2, 2/2)
1 hiz(llgisl12/2, a2;/2, 83, /2)

Bij = (6.14)
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where hi;{ll¢i;12/2,6%/2,6%/2) is a p times differentiable bump function
defined in Definition A.28 with p > 3 and ay; 2 (B; + R;), and b; <
min (R, Ry, ligi;al])-

The time derivative of yr; along the solutions of {6.8) satisfies

N
Yn = Zﬂ?(ue + Apg + Boi — God) (6.15)
=1
where we have used Gig = God i — U = W — Goa — (¥5 ~ Goa), ¥(4,J) €
(1,2,...,N),é # 7, and

2 =¢i — qua + Z B3G5 (6.16)
FEN,

u

From (6.153), we choose a bounded control u; designed as follows:
u; = —koruZg¥ (%) + Goa (6.17)

where ¥(§2;) denotes a vector of bounded functions of elements of §2; in the
sense that W(f) = [1(%iz) ()] with Qi and £2;, the first and second
rows of §2;, i.e. 2 = (%, 2;,)7. The function ¥(x) is a scalar, at least three
times differentiable and bounded function with respect to z, and satisfies

1) i)l < a1,

Yx)=0 ifz=0 z¢(x)>0ifz#0,

3) ¥(-a) = —¥(x), (z - y)[¥(z) - P} 2 0,

4) [(z)/x| £ 02, 10%(x)/O2| < g3, 02}/ O]em0 = 1

for all € R,y € R, where g1, 03, o3 are strictly positive constants. Some
functions that satisfy the above properties are arctan{z) and tanh(z). The
strictly positive constant kg is chosen such that

1 K
& et
201" .

(6.18)

ko (6.19)
The above condition ensures that ay, and o, are solvable from u;, We now

need to solve for ay, and a,, from the expression of u; in (6.17) and (6.9).
From {6.17) and (6.9), we have

COS(O’@)&M = _kﬁugdw(ﬂix) + 003(¢0d)u0d:
sin(ag, Jow, = —kouZg10(52y) + sin{Bodtioa (6.20)

Tour/ Toat ¥y fod .
=" cos and
hatyig )SQSod)“od

. F Voay/ oty Sad ; : — ' '
ot = Vighos = LS — Sin(gg)uoq 5100 Goa = BTy Zh)
ad il %

where we have used fog = Z) 8¢ =



116 % Formation Controf of Mobile Robots with Limited Sensing: State Feedback

and \/:c;m"’ + E > 0, see Assumption 6.1. The left hand sides of (6.20) are
actually the coordinates-of u; in the x and y directions. Now multiplying both
sides &f the first eqpation of {6.20) with cos{d,4) and both sides of the second
equation of (6.20) with sin{é,4) then adding the resulting equations together
yield

cos(ag, — Pod )}y, = —kgugd('ub(ﬂ,-x)cos(¢od)+w(ﬂ,-¢)sin(¢od))+'u,od. (6.21)

On the other hand multiplying both sides of the first equat.ior; of (6.20) with
sin{¢oq) and both sides of the second equation of (6.20) with cos(doq) then
subtracting the resulting 2quations give

sin{ag, — Poa)a, = —kougy( = ${(2:2) 8in{Poa) + ¥(f2i2) c08{¢oa)). (6.22)
From (6.21) and (6.22), we solve for oy, and oy, as
—kouod { — W{12,) sinldoa) + ¥(12:;:) cos(doa)) )
~kotiod (Y($2iz) cOS(doa) + ¥(2ic) sin(dog)) + 1/
oy, = cos{ag, ){ — kouZq¥($2iz) + cos(poa)uoa) +
sin{ag, ) — kot (52:y) + sin(dog)tiod).- (6.23)
It is noted that {6.23) is well defined since
—kotoa (W(£2iz) c08($od) + P($2i2) sin(doa)} +1 2 —201koufg ™ +1 >0

where the condition (6.19) has been used. Moreover, it is of interest to note
that oy, and oy, are at least twice differentiable functions of goq, Bod. Yo, i, G35
with j € N, j £ 4.

ag;, = Pod + arctan (

s

Remark 6.4. When £2; defined in {6.16) is substituted into (6.17), the control
u; can be written as

g [9(= (@~ %) = e, Byl - 23)]
= Eood |y (s ~ gia) ~ Ty, Bplts — 7)) | T 9ot

It is seen from (6.24) that the argument of 3 consists of two parts. The
first part, —(x; — xig) or —(¥ — wq), referred to as the attractive force
plays the role of forcing the robot i to its desired location. The second part,
-y €N, Bij{xi—x4) or — Zj en, 855 (4 —y;), veferred to as the repulsive force,
takes care of collision avoidance for the robot ¢ with the other robots. More-
over, the immediate control u; of the robot ¢ given in (6.17) depends on only
its own state and reference trajectory, and the states of other neighbor robots
j if the points Po; of these robots are in the circular communication area of
the robot ¢, since outside this area ng = 0, see Property 3) of 4;;.

(6.24)
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Now substituting (6.17) into {6.15) results in

N N
¢ = —kouzg O 2T (2) + D 07 (Au + Az). (6.25)

=1 i=1
Substitutiag {6.17) into (6.8) results in
G = —koulg® (§) + Goq + A1s + A (6.26)

Step 1.2

At this step, we view w; as an immediate control to stabilize ¢;, at the origin.
As such, we define

\ Wye = Wy — Oy, (6.27)
where a,,, is & virtual control of w;. To prepare for design of the virtual control
auy,, let vs calculate Bic. Differentiating both sides of the first equation of
(6.7) along the solutions of (6.27), the third equation of (6.1), and the second

equation of (6.23) results in

. aaqﬁ.- . 601¢‘. . 80{@- . 30:,"
Fie =Wie + Oy Baod God Db Bod Briog Yod — s (u; + Ay + Ag)
Y 8o
E ) 4 (ui -+ Ay 4 Aoy ~ (u + Ay + Agy)). (6.28)
= Ogi;
J=1j#i

To design the virtual control oy, we consider the following function

N
prz=¢n+05> ¢% (6.29)

=1

whose derivative along the solutions of (6.25) and (6.28) satisfies

(Q Ala

p12 = —koudy Z QT o) + Zrz"Az. + zqa,,

i=] =1
30,;.‘
EYS — i oq — Bu Upd —

+ e +
Bie *

3a¢; aa¢, ?,?f(w + Ay + Ag,) -
£

aadad

N
&
Z 62¢’ (Uz + Ala + A?s - (uj + Al; + 423))) (630)
jelgi .

aw‘

It is noted that %‘_1:' is well defined since M =" fol cos(Ade JdA and

9’1%2)—_—1 f ; $in{Ad:.)d are smooth functlons for all ;. € R, F';om (6.30,
we cl"noose the virtual controt ¢, as
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L4 Q?Ah' 3(3%l . 30{@ 3&@
Quy = _kz_‘iﬁie =, oo + 0o God + Bdod ¢od + Ftod od +
‘ 6‘a N ba
°" T+ Au) + 2 (i Au = (uy + 4y) (631)
i=1j#i

where k; is a positive constant. It is of interest to note that ay, is an at least
once differentiable function of go4. God; Pod> d:od,uod, od, §ir Pi» Gij» @5 With § €

N;,j # i. Moreover, it should be noted that the virtual control ry, containg
only the state and reference trajectory of the robot i, and the states of other

neighbor robots 7 if the pomt.s .PQJ of these robots are in the communication
60¢

area of the robot #, because outsxde this area -rt = 0 thanks to Property 3)
of ;. Substituting (6.31) into”"{6.30) results in (a.ft.er some manipulation):

N N N
: il
Pra= —kouZg 3 TH(R) =Y kidle + [cbiewse + (2 qﬁm—ﬁ -
=1 i=1 i=1
8 aa ,
S (o, 2o o)) . (632
J=lJ#i q
Substituting (6.31) into (6.28) gives
. .QTA“ 30%.
ie = —Kithie — — - 4~
¢ ? Bic Og; %
Y a
> ﬁ(ﬁzs = A2;} + Wie. (6.33)
F=lj#i

To prepare for the next section, let us compute the term 7«7,-@,-6 where
@ie = [Vie wie)T. From the second equation of (6.7), (6.27), and the last
equation of (6.1), we have

M. = —-Ci(w)w:i — Diwi — Mo, dw.-]r + Bir;
= —_ﬁgwie + &:0; + E;'T,' (634)

where
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Aoy, dory, . Aoy, - Ao, y da,
Yot = o Gog + o tigg + 2 L9 + (9, — 0
bo = g dea 5 ted + 5 %d%cs Ba 3-12#‘ 3 ;( i),
. By, oy, . Oy, Baw‘ Aoy, Oy,
e + o Gog + + + 2 fog + 2 Bog +
Ood Boa Bttog " T Bliog " Boa Pod Bod God
8oy, Hay,, N By, 30:
gy + Z ( T (a? - ))
dq; B, ot Op;
W —Cpi —Qui —Gy 0 0 0 0
& 0 0 0 0 —wvw—ay —Cw ~—Gu|’ (6.35)

6= [bic; dui dizi M cifbi dayg dan ﬁl22i]T

where 9; = w; + Ay; + Agi, i = 1,..., N. Again, &, and ¢, contain only the
state and reférence trajectory of the robot 4, and the states of other neighbor
robots j if the points Pp; of these robots are m the communication area of the

robot i, because outside this area -5;3-;- -aq—uk 0, and 3—3%’_*'- = { thanks
to Property 3) of 5;;.

6.2.2 Stage II

At this stage, we design the actual control input vector 7; and update laws for
unknown system parameter vector ©; for each robot i. To do s0, we consider
the following function

N
wir =@ + % Z (wf;-ﬁ,:w.:e + é;-rf",'lé,-) (636)

i=1

where §; = 6; ~ é,— with ©; being an estirgate of &;, and [ is a symmetric
positive definite matrix. Differentiating both sides of {6.36) along the solutions
of (6.34) and (6.32) yields

.

N -
¢11 = —koﬂod Z ol () - Z kil + D diewse +

i=1 i=1 i=1

N N
Bex dax da

T i By ¢ ) ]
Z (n “begt T Z | ( Ba bie — Pas ¢ e))ﬁz, +
=1 J=1g#i
N -
Z (w;‘:( - Diwie +$:6; + -gi‘l'{) - é?f}_'lég) (6.37)
i=1 . .

which suggests that we choose
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=5 ("'— Liwie — @iég -

-

. 3%1 -~ (day, dag, ))— _ .
[( ';bae. a Z ( a(hj ‘i’ze aqj“ ¢je 42: ¢u

T)
J=13#d

6; = NéT (6.38)

where Ay; = fcos(¢) sin(¢,)]7, and L, is a symmetric positive definite ma-
trix. Substituting the first equation of (6.38) into (6.34) gives

M = ~(Di + Li)wic + & é -

8 X 8 T
[(QE‘ - 45118";9?'!'%—‘ h Z (?;%‘ ¢:e - a¢j ¢'je))42: ¢u] N
% e VOO

(6.39)

By construction, the control 7; and the update 8; given in (6.38) of the robot
1 contain only the state and reference trajectory of the robot ¢, and the states
of other neighbor robots j if these rebots are in a circular area, which is
centered at point Pp; of the robot i and has a radius no greater than F;. Now
substituting (6.38) into (6.37) results in

N N N
G = —kouga 3 OTU(R2) - kit — D wl(Ds + Li)wse. (6.40)
i=1 i= =1

For convenience, we rewrite the closed loop system consisting of (6.26), (6.33),
(6.39), and the second equation of (6.38) as follows:
Gi = —kous W (4} + Goa + Axi + g,

")

. QTAH 30‘¢, N 80¢
ie = —Kidhie — — — 5 Ay~ Ag; — Agz) + wie,
¢ ‘ ¢ € @"ie 3(],— 2 j=lz’j:¢‘ 3(1:;( 2 23) Wie
Miw,, = —(D; + Li)wie + $:0; —
Jax Y Aoy, day T
-QT - Q”ie;‘m - (_ﬁ‘fﬁie — ¢je)) ¢ie:| [
[( ! A j:;j i \ O
6; = ol wie . (6.41)

We now state the main resuit of our paper in the following theorem.

Theorem 6.5. Under Assumption 6.1, the control 7; and the update law O;
given in (6.88) for the robot i solve the formation control objective. In partic-
ular, no collisions between any robots can occur for all t > tg > 0, the closed
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loop system {6.41) is forward complete, and the position and orientation of the
robots track their reference trojectories asympiotically in the sense of (6.6).

6.3 Proof of Theorem 6.5

We first prove that no collisions between the robots can occur, the closed
loop systemn {6.41} is forward complete, and that the robots asymptotically
approach their target points or some critical points. We then investigate stabil-
ity of the closed loop system (6.41) at these points, and show that the position
and orientation of the robots asymptotically track their reference trajectories.

+Proof of no collisions and complete forwardness of closed loop system.
From (6.40) ard properties of the function ¥ , see (6.18), we have ¢1; < 0,
which implies that @rr(t) < prr{to). VE > to. With definition of the function
wir in (6.36) and its components in {6.29), (6.10), (6.11) and (6.12), vre have

Z[wn 3 Bult) + 56ult) + 30RO Mimie(5) +

JEN;
56 -8 E: - 8] < Z [ritto) + 2}; Bislto) +
§¢s'e(to) + Ewi(t(})ﬁzwie(tﬁ) + -2'(9i - Gt IO - 9ifto))]

(6.42)

for all t > tg > 0. From the condition specified in item 4) of Assumption 6.1,
and Property 5) of 8;;, and definition of ¢ie, w;,, we have the right hand side
of (6.42) is bounded by a positive constant depending on the initial conditions.
Boundedness of the right hand side of (6.42) 1mplles that the left hand side
of (6.42) must be also bounded. As a result, 8;;(t) must be smaller than some
positive constant depending on the initial conditions for all ¢ 2 ¢ > C. From
properties of @3;;, see (6.13), lgi;(¢)ll — (B; + B;) must be larger than some
positive constant depending on the initial conditions denoted by €3, i.e. there
are no collisions for all ¢ > t > 0. Boundedness of the left hand side of (6.42)
also implies that of (g;(t) ~ Gia(t)), die(t), @ie(t) and O4(t) for all £ > tg > 0.
This in turn implies by construction that (), ¥;(2), ¢:(t), vi(t) and wi(t) do
not escape to infinity in finite time. Therefore, the closed loop system (6.41)
is forward complete. » .

+Equilibrium points. Since we have already proved that there are no col-
lisions between any robots, an application of Theorem 8.4 in [58] to- (6.40)
yields
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hm (kwgd(t) Z QT W ((t) + Z kil (8) +

i=1

S oI )(D; + L.:)w,-e(t)) 0. ' (6.43)
i=]

By noting that lim—. 12,(t) # 0 as specified in item 5) of Assumptlon 6.1,
the limit equation (6.43) implies that

Jrg, Gi()= 0. Jlimg ¢ie(t) = 0, Jig wielt) = 0.
By construction, lim, ... 2;(t) = 0 and limy_, ¢ic(t} = 0 imply that
limy oo ($s(t) — doalt)) = 07 Moreover, from definition of (2 in (6.16),
lim;—. o, {2:(t) = 0 means

Jim () - g + Y Bhas(t)) = 0. (6.44)

FeN;

The limit equatlon (6. 44) implies that ¢{t) = {gf (£} ¢Z (¢), ..., g% (#)]T can tend
to gt = |4i4 633 - aRa]" since B};lig n=ligan = O (Property 1) of 8y), or
some vector denoted by q. = [of, ¢, ..., q%.)" as the time goes to infinity, i.e.
the equilibrium points can be g4 or ¢.. It is noted that some elements of g,
can be equal to that of ¢;. However, for simplicity we abuse the notation, i.e.
we stil] denote that vector as .. Indeed, the vector g. is such that

=0,¥i=1,..,N. (6.45)
—QC

Qi‘q:qc [q: - qi¢ + Z ;JQ‘;J
FEM;

To investigate properties of the equilibrium points, ¢4 and g., we'consider the
first equation of the closed loop system (6.41), i.e.

G = —kou2,F (1) + doa + Ar; + A (6.46)

Since we have already proved that the closed loop system (6.41) is forward
complete, and lim;..oo $ic(t) = 0 and limi—oo @ie(t) = 0 imply from the ex-
pressions of Ay, and Ag;, see (6.9), that lime— oo (A1 (1) + A24(2)) = 0, we treat
Ai(t) = Auilt) + Az(t) as an input to (6.46) instead of a state. Moreover,
we have already proved that the trajectory, ¢, can approach either the set of
desired equilibrium points denoted by g4 or the set of undesired equilibrium
points dencted by ¢, *almost globally’. The term *almost globally’ refers to the
fact that the agents start from a set that includes both condition (6.2) and
that does not coincide at any point with the set of the undesired saddle point
g.. Therefore, we now need to prove that gy is locally asymptotically stable
and that g, is locally unstable. Once this is proved, we can conclude that
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the trajectory g approaches ¢q from almost everywhere except for from the
set denoted by the condition (6.2) and the set denoted by g., which is unstable.

+Properties of equilibrium points. The system (6.46) can be written in a
vector form as

G = —koulqW,(q. qa) + vec(goa) + vec(A;) (6.47)

where ﬁ(q, ga) = WT(2) . T2 BT (20)])7, vec(oa) = [g7,, . 61y
w857, and vec(A;) = (4], .., AT, ..., A} 7. Therefore, near an equilib-
num puint g,, which can be either g4 or ¢., we have

¢ = —koul, y(q,q4)/Ba|,_, (a4 — qo) + vec{Goa) + vec(4;) (6.48)

4=q-

where the (i*;5%") element of the matrix _%.‘L‘Ll is Ay; = -a;* (&5 €
N with N being the set of all agents. A snnple calculation shows that

3!?‘ o
(1 + Z JBU) In+ Z :ﬂuqz;n _ ﬁi}" gJQiJQnJ (649)
i€, FER;

foralli=1,...,N,j € N;, j # ¢, where I, denotes the identity matrix of size
n. et N* be the set of the agents such that if the agents ¢ and j belong to the
set N* then [lgi;ll < bi;. Next we will show that g4 is asymptotically stable
and that g, s unstable.

-Proof of g4 being asymptotic stable. Using properties of 8;; and o listed
in (6.13} and (6.18), we have from (6.49) that forallé =1,...,N,i # 7

() 20,
_5.(2‘_t = Iﬂ.s nagjd = 0 a = In, + Z ﬁ:;dqqdq;l;di
¥olg=qq B \g=gy ’ jeN;
e,
S| = Baduadia / (6.50)
9 g=qq .
where Bj;q = O, _, . and By = ;}Lij:qm' with ¢ije = ¢ia — gja- We

consider the function
Va= 1+ lig-qal® -1 (6.51)

whose derivative along the solutions of (6.48) with ¢, replaced by g4, using
(6.50), and noting that ¢,u = ¢;q4 satisfies
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+

N

5 v 1 ( 2 2

Vy — kot lig: — @:all® —
\/1+Hq il “Z T

kl:luod Z fssgd(%jd(q:; qu)) +Z(Q‘i Qad) At)

(4.9}EM i35 i=1

kﬂuod ]
llgi = giall® + ) Hll (6.52)
Vv o PZ E ,

since B, > 0, see Property 1) in (6.13). The last mequaht.y of (6.52) implies
that g4 is asymptotically ‘stable because limy—oo uod(t) # 0, and we have al-
ready proved that lim;_ ., A;(t} =

- Proof of q. being unstable. Agdin using properties of F;; and ¥ in (6.13)
and (6.18), we have from (6.49) that

(O, 9 >
3&2.“') =In g =+ > Bige)dn+ Y Bijtiseale
i lg=ge ¥ lg=. ien, sem,
a9
addl ~Bise = Bijetietie 659
6Qj g=q. ! e ( )

for all i = l'ms Ni?' 7& j‘.‘ where Qije = fHic = Hes ﬂ;jc = ﬁgj,ﬂij=(}ijc
e = B3 |qu i . Since the related collision avoidance functions 3;, see (6.12),
are specified in terms of relative distances between agents and it is extremely
difficult to obtain g, explicitly by solving (6.45), it is very difficult to use the
Lyapunov function candidate V., = 0.5]l¢—¢.| to investigate stability of (6.48)
at g;. Therefore, we consider the Lyapunov function candidate

Ve=vV1+[lgd-gl? -1 ~ (654

where § = {gf3, qf3, .- -0l 433, s G3n s - 0 —1 )7 80 G = [0z, gTacs - afves
@3er - @ines A1 ne)T - Differentiating both sides of (6.54) along the so-
lution of (6.48) with g, replaced by g, gives

H kou?
AR - < L

VI+1a-al?  Saine

kguf,d 2
e (1 + NBellass — qusell® -
1+ 17~ ll? (,-J-)ze:ﬂ. JeT

kouZ, N 2
"-I*_I_—"—‘idj_—P > Blelahclas — @0))” +
q ql: (" J)GN’

z (Qt’j Q’SJC - 4;) (6.55)
1 + "q qc |2 (1j)€N
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where ¢ # j and (6.53) has been used. To investigate stability properties

of g, based on (6.55}, we will use (6.45}). Define 2ic = 2 — e, V{i, ) €
{1,...N}, ¢ # j where 2i; = 4=y, = 0, see (6.45). Therefore {2;;. = 0.
Hence 3_; ;en- qf_;cﬂgjc = 0,1 # j, which by using (6.45) is expanded to

3" (aflaise — qia) + NBleqhegise) =0

{i,JIsMr
= Y (L4 NBIahme= Y GheSid (6.56)
(i.7)en- {i.)EN"

where ¢ # j. The sum Z(,-_ Jens q?}cq,:jd is strictly negative since at the point,
say F, where ¢;; = gij4, V(4,7) € N*,¢ % j all attractive and repulsive forces
are equal to zero while at the point, say C', where qi; = ¢ijc V{i,J) e N*,i # j
the sum of attractive and repulsive forces are equal to zero (bui attrac-
tive and repulsive forces are nonzero). Therefore the point, say O, where
gi; = 0, ¥(z,7) € N*,i # j must locate between the points F' and C for all
(i,7) € N*,i # j. That is there exists a strictly positive constant b such that
Z(:’.j)eN' qgcqijd < —b, which is substituted into {6.56) to yield

D U+ NBahegise < —byi # . (6.57)
(3,3)EN~

Since q,jchjc > 0,Y(¢,7) £ N* i £ §, there exists a nonempty set N** ¢ N*
such that for all (¢,7) € N**,2 # 7, {1+ Ngj; } is strictly negative, i.e. there
exists a strictly positive constant »** such that. (1+NBj;) < =b", ¥(i,j) €
N** i # 7. We now write (6.55) as

- kou?
Vom m el Z lgss =~ qejell® +

1+ ”q - QC"2 (i, H)SN\N* -
Z (1+ NBMlas — gisel® +
(5,5 )R\ .
N Z ﬁ;gc(‘?:’;c(‘hj _‘ch))2] -
(SJ)EN
__Eoer SN () NGl - gl +
]' + "q || (3 J)eNtt
1
> (95 gise) (A - 4; ) . (6.58)

1+ Hq - q\“.‘" (4,7)€R
where ¢ # j. We now define a subspace such that ¢;; — gijc = 0, Y(i, i) €
Ny N** and q‘?;c(fb‘j - gize) = 0, ¥(4,§) € N*,{ # 7. In this subspace, we have
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v V= 14 3T g - gl - 1,
) ’ (L7 e
&*
kouZa 3o syene (1 + N8 Hais — aiel® +
\/ b 2 )eN gy —gisel?

E('&'._f)GN" (q%'.f - Qt'jc)T{Ag - AJ-)

o=

(6.59)
\/l + E(‘-J—)GN"“G& —quseli?
Using {1+ NG[;.) < —b**, V(4,7) € N**,i # j, we can write (6.59) as
Ve= 14 Y gy — gl — 1,
(i.g7eRr
Vez b%houlVe— D 14— 44 (6.60)
(i, f)EN"* '

Now assume that ¢, is a stable equilibrium point, i.e. lims— o [|gi(t) — il =
d;,¥i € N with d; a nonnegative constant. Note that N** C N, we have
lime—ce [1g:(£) — gicll = di, Vi € N**, which implies lim;—.cc 3¢5 5yen-+ 1g:5(t) —
gijell = d"*,¥(4,j) € N**,{ # j with d** a nonnegative constant, since ¢;; =
gi — ¢5 and Gije = Gic — gjc. We now consider two cases: 3, .. ll9i5(to) —
Qijell # 0 and 57, o opee {1265 (t0) — ijell = 0.

Case I' 32, ene- 1655 (to) — gijell # 0. Since lime—co uZ (t) # 0_(Assump-
tion 1) and we have already shown that limy— o, A;(t) = 0,Vi € N, V¥, in (6.60)
is divergent. Therefore, 37 ; ;e [14i5(t) —isc]| cannot tend to a constant but
must be divergent. This contradicts lime—oo ; syene- l0i5(£) — qijell = 4**,
i.e. g cannot be a set of stable equilibrium points but must b2 a set of an
unstable ones in this case.

Case II: 37, yen-+ Ngis(t0) — giscll = 0. There would be no contradiction.
However this case is never observed in practice since the ever-present physical
noise would cause 3; oene- ll0i5(¢*) — gijcll to be different from 0 at the time
£ > to. We now need to show that once the sum 37 sene- I (t") — gijef is
different from zero, this sum will not come back zero again for all ¢ > t*, i.e.
the set of undesired equilibrium points g, is not attractive. To do so, consider
(6.60) with the initial time ¢* instead of #g, i.e.

Vity= 1+ D llgss(t) — @useli® - 1,
{tg)EN="

Va(t) 2 b7 koudgVelt) = 3. [14:(t) — 4,00 (6.61)
(£, 7)EN*"
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for £ > t* and Z(i‘j)eﬁ.. llgsj{t*) — giscll = &”, where é* is a positive
constant. Since limg-., u24(t) # 0 {Assumption 1) and we have already shown
that Hmy—,e A:(t) =0,Vi € N, V. in (6.61} is divergent for ¢ > *. Therefore,
Ptpens lais (6} — qisell, for t > t*, cannot tend to a constant but must
be divergent. This contradicts limyoo >¢; syen=s 65} — Gizell = d**, ie. qc
must also be a set of unstable ones point in this case. Proof of Theorem 6.5
is completed. O

6.4 Simulations

Control mput

3 -l

e 15
Timels] .

Fig. 6.3. Simulation resttts with 10 robots.

In this section, we simulate formation control of a group of N = 10 mobile
robots to illustrate the effectiveness of the proposed controller. The physical
parameters are taken from Section 1.3.1, Chapter 1,and R; = 1.8, B; =5,i =
1,...,N. The robots are initialized as follows: x; = Rpsin{(i — 1)2n/6),4: =
Rycos{(t — 1)27/6),wy; = 0,wy; =0, where g =9 fori=1, .. ,6and Ay =5
for i = 7,...,N. The initial values of ¢;,¢ = 1,.., N are taken as random
numbers between 0 and 2. The initial values of ©; are taken as half of their
true values. The reference trajectories are taken as gog = [¢ 10sin(0.15)]7, § =
2 and l; = 10[sin((¢~1)27/N) cos((i—1)2x/N)|T. This choice of the reference



128 6 Formation Control of Mobile Robots with Limited Sensing: State Feedback

trajectories meéns that the common reference trajectory goq4 forms a sinusoidal
trajectory, and that thedesired formation configuration is a polygon whose
vertices uniformly distribute on a circle centered on the common reference
trajectory and with a radius 10. The functions 8;;, (4, §) € N, # j are taken
as in (6.14) with p = d,a; = 2R;, b;; = E;. The function ¥() is taken as
arctan(). The control gains and update gains are chosen as kg = 0.1,k =
2, L; = 46, Iy = 0.2{g, where I, is a z dimensional identity matrix. Indeed,
the above choice of kg satisfies condition {6.19). Simulation results are plotted
in Fig.6.3. It is seen that all robots nicely track their reference trajectories.
During the first four secomnds, the robots quickly move away from each other
to avoid collisions then track their desired reference trajectory, see sub-figure
A) in Fig.6.3, where the trajectory of the robot NV is plotted in the thick
line. For clarity, only the controt inputs [rin T2n]7 of the robot /¥ are plotted
in sub-figure B) of Fig.6.3. Sub-figure C) in Fig.6.3 plots the tracking errors
TN — Tnd, YN — YNd, PN — ¢ng of the robot N. Indeed these errors tend to
zero asymptotically. The distances between the robot N and other robots are
plotted in sub-figure D) of Fig.6.3. Clearly, these distances are always larger
than By + R; = 3.6,i = 1,..,N — 1, i.e. there are no collisions between the
robot N and all other robots in the group. Moreover, in sub-figure E} we plot
product of all gaps between robots: Gap,y = H{i,j)eﬁ‘i#j(ﬁqejll - {(R; + R;)).
It is seen that Geap.y is always larger than zero. This means that (gl - (Ri+
R;}y > 0,V(4,§) € Nt >0, i.e. no collisions between any agents occurred, For
clarity, we only plot the results for the first 20 seconds in sub-figures B}, C),
D) and E).

6.5 Notes and references

Decentralized navigation of non-point agents with single integrator dynam-
ics was also investigated in [60] but each agent requires global knowledge of
position of other agents. Formation control of vehicles with nonholonomic
constraints was also considered in the literature(e.g. {40]). However, the non-
holonomic kinematics are transformed to a double integrator dynamics by
controlling the hand position instead of the inertial position of the vehicles.
Consequently, the vehicle heading is not controlled. In addition, switching
control theory [59] is often nsed to design a decentralized formation control
system (e.g. [39], where a case by case basis is proposed), especially when the
vehicles have limited sensing ranges and collision avoidance between vehicles
must be considered. Clearly, it is more desirable if we are able to design a
non-switching formation conirol system that can handle the above decentral-
ized and collision avoidance requirements. Moreover, in the tracking control
of single nonholonomic mobile robots (e.g. (15], [1], [18], [16]), where it seems
that the backstepping technique was first used in {15] to take the robot kinetic
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into account in the contrel design, the tracking errors are often interpreted in
a frame attached to the reference trajectory using the coordinate transforma-
tion in [14] to overcome difficulties due to nonholonomic constraints. If these
techniques are migrated to formation control of a group of mobile robots, it is
extremely difficult to incorporate collision avoidance between the robots. The
ahove problems motivated the contribution of this chapter. The material in
this chapter is based on the work in [61].



7

Formation Control of Mobile Robots with
Limited Sensing: Qutput Feedback

Based on th® material presented in Chapters 5 and 6, this chapter presents
a constructive method to design output-feedback cooperative controllers that
force a group of N unicycle-type mobile robots with limited sensing ranges to
perforin desired formation tracking, and guarantee no collisions between the
robots. The robot velocities are not required for control implementation. For
each robot an interlaced observer, which is a reduced order observer plus an
interlaced term, ts designed to estimate the robot unmeasured velocities. The
observer design is based on a coordinate transformation that transforms the
robot dynamics to a new dynamics, which does not contain velocity quadratic
terms. The interlaced term is determined after the formation control design
is completed to avoid difficulties due to observer errors and consideration of
collision avoidance. Smooth and p times differentiable jump functions given
in Section A.7 are incorporated into novel potential functions to design a
formation tracking control system. Despite the robot limited sensing ranges,
no switchings are needed to solve the collision avoidance problem. Simulations
illustrate the results. -

-

7.1 Problem statement I. .

7.1.1 Robot dynamics

We consider a group of N mobile robots, of which each has the following
dynamics (see Chapter 1, Section 1.3.1):

& = v; cos(e;)

¥ = v; sin{¢;) )

& =w; A
Mﬁﬁ;‘ = —Ei(wg)w.; - ﬁiwg' +§3‘T§,i = 1, ,N * (71)



132 7 Formation Control of Mobile Robots with Limited Sensing: Output Feedback

L

L]

v ¥ 1
r Sway axis

X

I

Fig. 7.2. Formation setup.

where all the state variables and parameters are defined in Section 1.3.1,
Chapter 1.

7.1.2 Formation control objective

In this chapter, we will study a formation control problem under the following
agsumption:

Assumption 7.1 1. The robot velocities (wy; and wy) or (v; and w;) of
each robot ¢ are not available for control design.

2. The robot i, see Figure 7.1 has a physical safety circular area, which is
centered at the point Py; and has a radius R;, and has a circular commu-
nication area, which is centered at the point Py; and has g radius B, see
Fig. 7.2. The radius R; is strictly larger than R, +8;,j=1,.,Nj#i
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3. The robot i broadcasts its signels, (i, v, ¢, %), where @, is en esti-
mate of oy to be designed later, and its reference frajectory, qia, in
its communication avea. Moreover, the robot i can receive the signals,
(.45, ¢, @;), and reference trajectories, ¢;4 broadcasted by other robots
53 =1,.,N.j # i in the group if the points Fy; of these robots are in
the communication area of the robot 7.

4. At the initigl time to = 0, each robot starts at a location outside of the
safety arens of other robots in the group, i.e. there exists a strictly positive
constant £, such that

lai(to) = gs(to)ll ~ (B; + B} 2 €1, ¥(5,5) €(1,2.,N), i#5  (7.2)
where g; = [z yai]T-
5. The reference trajectory for the robot i is qiq = [Tiq yid]” , which is gener-
ated by
@id = God(Soq) + i (7.3)

where qoa{sod) = [Tod(50d) Yoa(804)]T is referred to as the common refer-
ence trajectory with syq being the common trajectory parameter, and l; is
a constant vector. The trajectory qoq satisfies the following conditions

Jim wla(t) # 0, woa = /22 + 4
Sodr A T2 + 4% > 0, Juea(t)] < ul™ (7.4)

where 2}, = gi:j, Yog = %gfﬂ‘, and u#* is a strictly posit‘ive constant,
Moreover, Goq, ltod are also bounded. The constant vectors ;i =1,2,...,. N
satisfy

s — b1~ (B + B)) Z €2 Y(3,5) € (L2 N), i 5 (75)

where €, is @ strictly positive constant. ,

Remark 7.2. Item 1} in Assumption 7.1 implies that we need to consider an
output feedback control problem. Items 2) and 3) in Assumption 7.1 specify
the way each robot communicates with other robots in the group within its
communication range. In Fig. 7.2, the robots ¢ and ¢ — 1 are communicating
with each other since the points Ppi—; and Py are in the communication
areas of the robots ¢ and ¢ — 1, respectively. The robots ¢ and i + 1 are not
communicating with each other since the points Py; angd Fo ;41 are not in the
communication areas of the robots ¢ + 1 and ¢, respectively. Similarly, the
robots i — 1 and ¢+ 1 are not communicating with each other. In item 5}, the
constant vectors I;,2 = 1,..., N specifies the desired formation configuration
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with respeet t.o the earth-fixed frame OXY . The condition (7.4) implies that
the common reference Goq i regular and its velocity w4, which specifies how
the desired formation, whose configuration is determined by &, moves along
dsd, 15 bounded and satisfies a persistent excitation condition, i.e. the desired
formation always moves along the common reference trajectory, g,q. The con-
dition (7.5) specifies feasibility of the reference trajectories ¢;4,2 = 1,2,...,. N
{recall from (7.3) that gis — ;¢ = s —1;, Vi # j) due to physical safety circular
areas of the robots. Finally, all the robots in the group requite knowledge of
the common reference trajectory g,y since this trajectory specifies how the
whole formation should inove with respect to the earth-fixed frame OXY,

-

Formation control objective: Under Assumption 7.1, for each robot ¢
design an observer to estimate its velocities and the control input +; such
that each robot asymptotically tracks its desired reference trajectory g¢iyq
while avoids collisions with all other robots in the group, i.e. for all {4, 7) €
(1,2, . N}Li#jt 2120

Jim (g:t) - gia(t)) = 0,
Jim (4i(t) ~ dialt)) = 0,
llgs(8) — 4 ()] = (B; + B;) 2 €3 (7.6)

where ¢:q(t) = arctan(y),/x, ), and €3 is a positive constant.

7.2 Observer design

For the sake of self-containing, we repeat the coordinate transfermation for
the observer design in Chapter 2, Section 2.2.2. It is noted that we will not use
the same observer as in Section 2.2.2 but will design an interlaced observer to
overcome the obstacle caused by the collision avoidance objective. As such, we
first transform the dynamics (7.1) of the robot 4 to a new dynamics that does
not contain the quadratic term C{w;)oo;. As such, we introduce the following
coordinate transformation:

X = Qi(mi)m (7.7)

where n; = [2; v ¢:]7, and @;(s;) is an invertible matrix to be determined.
Differentiating both sides of (7.7) along the solutions of the first three equa-
tions of (7.1} results in

X; = [Qu(m)w: — Qiln: )Hi_las(ws)wﬁ] +Qi(n)M; " (-Diw, + Bir,).
(7.8)
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Our goal at this moment is to find the matrix Q;(n;} so that
. _— 1
[Qi(m)ws — Qi(m)M;  Cilwi)ws] = 0,¥(m, w;) € R®. (7.9)

Using the first three equations of {7.1), the above equation is equivalent to

3(}']51 Qm

e os{¢g) + ——— B0: sin{¢;) =

B b;

g;z + c.: a1 =0,

Bthl 4 k2 aQ3k2 (d)l} + Igixz si (Qﬁ,} — Mq;k? = { (710)
B¢ Oz dy; M2z

where g5y with k=1,2 and ! = 1,2 denote the components of the matrix
Qi(1;). The above set of partial differential equations has the following family
of solutions

qik1 = Cir1 Sin(csA ¢’a) + Cike COG(C-,A ¢'th
Gik2 = binoes 4y (Ctkl COS(C, s¢'z) = Ciua Sln(caﬁ ¢:)) (7.11)

where 4; = m, and Cix; and Ciko are arbitrarily constants. Choosing
Ci1 = Cizo =0, Cia = Cio1 = 1 results in

oy | cosleiAigs) —biAirmzg; sin{e; Ais)
Q1) = | sin(cidigh) biAitnans coslecdigh) (712
Indeed, @;(n;} given in (7.12) is invertible for all ¢; € R since det(Q;(m;))} =
b; A;ifigo;. Moreover, all elements of (;(n;) are bounded by a constant for all
¢; € R, Now, substituting (7.12) into {7.8) results in

X = Qn)M; (-D.@; ‘(nJX + B;n) (7.13)

where we have used w; = Q" (n:)X;. F\’om (7.13) we design a reduced ob-
server to estimate X; as follows:

= QM (-Di@; ()X + Bim) + =4 (7.14)

where X,- is an estimate of X;, and Z; is an interlaced term to be specified
in the control design. This interlaced term is included in (7.14) to overcome
difficulties due to the observer errors in the control design i the next section.
The idea of introducing the interlaced term =; in the obseryer (7.14) is filus-

trated in the following simple example. N

»
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Erample ’{.&'Considér the nonlinear system:
. Ty = f;,(:l‘:l ]:Bz‘ B9 =—Za4+u [7.15]

where x1,zz are the states, u is the control input, and f,(x;) is a nonlinear
function of x; with assumption that fi(z;) # 0,¥x; € R. The objective is
to design the control u such that the system (7.15) is stabilized at the origin
without measuring x;. We first design a reduced order observer as follows:
By = ~dp+u-+v (7.16)

-

where ¢ is an interlaced term to be determined later. Let the observer error
be $3 = 22 — &2, then from (7"16) and the second equation of (7.15), we have

-

Bg = —fg — 1. (7.17)

Using the backstepping technigue [12], we design the control input u for the
system, which consists of the first equation of {7.15) and (7.16):

= filz)(@2 + 82), Za=-EB2tut+? (7.18)

as follows:

kixie
fi(z1)
{i“le = —kiz1e + f1{z1)72¢ + fL{T1) T2
#e = —Ra +u+9 — §E(filx1)d2 + fi21)i)

Tye = T1, Tze =d2—@p, Q1 =-—
(7.19)

where k; is a positive constant. We now take the Lyapunov function candidate:
V = (2}, +x3. +£3) whose derivative along the solutions of (7.19) and (7.17)
is

. - . d .
V = —kya?, ~ &2 +a:ge(f1(:51)mle g tutd - -ﬂfl(a:l):cg) ¥

3.’81
- O
£ =9 +mrcfilm) - 22 gt i) (7.20)
which suggest that we choose the interlaced term as: ¢ = x.fi(T1) -
xzeaﬂlfl {(z1), and the control as: © = —kgxy, — filx)zre + 22 — 9 +

g%l- fi{z)E2 where k2 is a positive constant. With this choice, we have
V = -klxle kox3, — #3. This implies that T1.(t), z2.(t) and Z2(t) expo-
nentially converge to zero from any initial conditions. This simple example
illustraies the idea of including the interlaced term ¢ in the observer (7.16).
This interlaced term is then determined in the control design to void using
nonlinear damping terms as in [12]. Nonlinear damping terms are usually
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used to handle nonlinearities coupling with observer errors. However, non-
linear damping terms introduce strong nonlinearities in the {virtual/actual)
control. Moreover, in our formation control problem we cannot use nonlin-
ear damping terms to handle the observer errors, see Section 7.3. Hence we
proposed the interlaced term =; in the observer (7.14}. O

‘We now return to the observer design. Define the observer error X; = X; - X;.
then from (7.13) and (7.14} we have the following observer error dynamics

X = —Qi(n) M, 'D.Q7 ) X; - = (7.21)
Considering the Lyapunov function candidate

Vo = 0.5 Xl (7.22)

u

whose derivative along the solutions of (7.21) satisfies
. - N - =T — o ST —
Voi = = X7 Q:(n)M, " DiQ7 i) Xi = XTS5 < —poill Xil? - X751 (7.23)

where the strictly positive constant p,; is defined as po; = /\min(ﬁ_{:lﬁi) with
Arnin(ﬂ‘;-lﬁ;) the minimum eigenvalue of (A, ' D;). We define an estimate
of ; as )

@ = Q" (m)X; {7.24)
then we have )

@ = Q; ' () Xs. (7.25)
We will use the equations (7.22), (7.23} and (7.25) in the progf of the main
result. Now using (7.14) and (7.24), we can write the robot dynamics (7.1)
for formation control design in the next section as;

-
-

£; = 95 cos{¢;) + s cos(e;)
¥ = ¥ sin(¢h) + U;sin(¢;)
b; = s+

Mty = —Ci(:)&; — Doy + Bimy - Cui) o + MiQ7 ()51 (7.26)

for all ¢ = 1,..., N where &;, i; and &;, ; are defined from ; = [ 4|7 and
& = [3 w7

7.3 Control design - .

Since the robot dynamics (7.26) is of a strict feedback form {12] #ith respect
to the estimate of the robot linear velocity, v;, and the estimate of the angular

+
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velocity, i, we will use the backstepping technique [12] to design the control
input 7. The control design is divided into two main stages. At the first
stage, we consideg, the first three equations of (7.26) with §; and 4 being
considered as immediate controls. At the second stage, the actual control =
will be designed.

7.3.1 Stage 1

Since the robot is underactuated, we divide this stage into two steps using
the backstepping technigue. At the first step, the robot heading, ¢;, and the
estimate of the robot linear velocity, §;, are used as immediate controls to fulfili
the task of position tracking and collision avoidance. At the second step, the
estimate of the robot angular “velqcity, iy, is used as an immediate control
to stabilize the error between the actual robot heading and its immediate
value at the origin. We do not use the transformation in {14] to interpret the
tracking errors in a frame attached to the reference trajectories as often done
in literature (e.g. [15], [1], [16], [18]) to avoid difficulties when dealing with
collision avoidance.

Step 1.1

Define
hic = P — Oy, Vie =8 — ap, (7.27)

where oy, and ay, are virtual controls of ¢; and ©;, respectively. With (7.27),
the first two equations of (7.26} are read:

gi = u; + Ay + Ao + Ay; (728)
where ¢; = jx; )7, and

_ [eos(as,)]
a [Sin(a¢i)_
Ay = [ (COS((,‘b{e) - l)COS(Cl’(a‘-) - Sin(d"ic)Sin(a(ﬁs) o
¥ L (sin(gic) cos(ag,) + (cos(@ie) — 1)sin(osg,) |
Aoy = [cm(qﬁs)'

= Lsin(:) | %

O:l':l',' ’

_ feos(e:)] =
Ay = [Sin( e (7.29)

To fulfill the task of position tracking and collision avoidance, we consider
the following potential function
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N

o= Y (% +0.58) (7.30)

(2]

where v; and g; are the goal and related collision avoidance functions for the
robot 7 specified as follows:
-The goal function is designed such that it puts penalty on the tracking ervor
for the robot, and is equal to zero when the robot is at its desired position. A
simple choice of this function is

v = 0.5]lg; — gaa|”- (7.31)

-The related collision function &; should be chosen such that it is equa} to
infinity whenever any robots come in contact with the robot 7 | i.e. a collision
oceurs, and attains the minimum value when the robot ¢ is at its desired
location with respect to other group members belong to the set N; robots,
where N; is the set that contains all the robots in the group except for the
robot ¢. This function is chosen as follows:

Bo=3> By (7.32)
JEN;
where the function 8;; = 8; is a function of {|¢;;}|2/2 with ¢;; = ¢; — g;. This
function is chosen as follows:
By = h".?'(rl‘i'ij||2/2va'?j/2sb?j/2)
I 1= ki (ligul?/2, 0% /2,8% /2)
where hq;(|lg:;11%/2, a3;/2,b%/2) is a p times differentiable jump function
defined in Definition A.28 with p > 3 and a;; > (&H; + B;), and b;; <
min (R, Rj, lg:5¢). Tt can be readily checked that the function 3;; given in
(7.33) enjoys the following properties:

1) By =0, 8;=0, 8520 if gyl = fosal.

(7.33)

2) By >0 if 0 < flgi;ll < by, ’
3) Bi;=0,8;=0 85=0 8]=0 if gl = by,
4) Biy=o00 i gl £ (& + By), .

5) B < g, 18551 < p2, and (85¢50i5] € pay V(B + By) < llgisll < by,
6) [i; is at least three times differentiable
with respect 1o [lgis{I*/2 if llgis | > (B; + &) (7.34)

where gi;¢ = Gid ~ @44, bij i8 a strictly positive constant such that (B; + R;) <

#

bi; < min(R;, By, lgizall); w1, 2 and p are positive constants; g, 47; and

2 are defined as follows: Bj; = o0, 3 = 00, 8] = oo if llgyll < (B; +'By)

— B88;; "o 8, HE 38 ; y * )
*6:'1 = Bllg 1772 P85 = Bl 13/20 Pis = (e °72° if llgi;ll > (&2 =+ ﬂg)-
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Remark 7.4, Properties 1) - 4) imply that the function 3; is positive definite,
is equal to zero when all the robots are at their desired locations, and is equal
to infinity when a coliision between any robots in the group occurs. Moreover,
Property 1) and th& Tunction +; given in (7.31) ensure that the function @
attains the {unique) minimum value of zero when all the robots are at their
desired positions. Also, Property 3) ensures that the collision avoidance be-
tween the robots ¢ and j is only taken into account when they are in their
communication areas. Property 5) is used to prove stability of the closed loop
system. Property 6) ensures that we can use techniques such as'the backstep-
ping and direct Lyapunov design methods ([12], [58]) for control design and
stability analysis for continuous systems instead of techniques for switched,
nonsmooth and discontinuous systends ([59], [33]) to handle the collision avoid-
ance problem under the robot limited sensing ranges.

-

The time derivative of v;; along the solutions of (7.28) satisfies

N
en = Z 7 (s 4+ Ay + Asi + Ay — doa) (7.35)
=1

where we have used gy = Goast — U5 = Ui — Joad — {U; — Goa),V(i, §) €
(1,2,..,N),i{ £ 4, and

2i=q¢-qu+ Z B9 (7.36)
FEN;

From (7.35), we choose a bounded control u; designed as follows:
up = —koulg¥ (1) + doa (7.37)

where ¥(§2;) denotes a vector of bounded functions of elements oF £2; in the
sense that ¥(§2;) = [¥(f2z) w(l?,:y)]T with £2; and £2;, the first and second
rows of 12, i.e. 2; = [§2;; Q,-y]T‘ The function ¥(z) is a scalar, at least three
times differentiable and bounded function with respect to x, and satisfies

1) [¥(z)] € o,

2)P(zx)=0 fr=0, z(x)>0ifx#0,

3) Y(—a) = —p(2), (x — y)w(z) - ¥@) >0,

4) [¥(z) /x| < 03, {0(2)/0z| < 03, 0%(x)/0%]z=0 = 1

for all x € R,y € R, where p1, g2, g3 are strictly positive constants. Some
functions that satisfy the above properties are arctan(z) and tanh(z). The
strictly positive constant kg is chosen such that

1

k(} << W . (739)

(7.38)
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The above condition ensures that o, and «y, are solvable from u;. We now
need to solve for ay, and a;, from the expression of #; in {7.37) and (7.29).
From (7.37} and (7.29), we have

cos(ag, Jorp, = ~kou2 (%) + 08{od) od,
sin(ag, Jas, = —koueq¥(12iy) + sin{oa)tiod (7.40}
h h d e ®an TR AuE faa . d
where we have used @4 = [ 800 = e = COS( Doy JUog AN
. . Vog v/ T2+ U2 4o . .
Yod = Yhgboa = 2t¥rzdBed 2% — gin{Pygjueq since ¢og = arctan(y,,/z),}

LS A
and \/:t;dz +yZ > 0, see Assumption 7.1. The left hand sides of (7.40) are
actually the coordinates of u; in the  and y directions. Now multiplying both
sides of the first equation of (7.40) with cos{¢sq) and both sides of the second
equation of (.40) with sin(¢,4) then adding the resulting equations together
yield

cos{ag, — od) 0y, = —kotulg (Y{12;) cos(Boq) + ¥ ($2iz) sin(oq)) + toa. (7.41)

On the other hand multiplying both sides of the first equation of (7.40} with
sin{¢q) and both sides of the second equation of (7.40) with cos{¢,q) then
subtracting the resulting equations give

sin(ag, — dod)as, = ~kotsg( — ¥(ix) Sin(Boa) + P((%e) cO8{doa)). (7.42)
Frem (7.41} and (7.42), we solve for ay, and oy, as
~kouoa( — ¥(2ix) sin(od) + ¥(L2:) cos{Poa)) )
—koton (W($2iz) cOs{oq) + ¥(12z) sin(og)) + 1/’
Oy, = COS(“m )( - kUu§d¢{Qix) +
c08{doa)tiog) + siti{cg, Y — koul D($2y) + sin(Pog)tiod)- (7.43)
It is noted that (7.43) is well defined since
—kottoa (¥($2iz) cos(doa) + ($2iz) sin{doa)) + 1 = ~201koul™ +1> 0

where the condition (7.39) has been used. Moreover, it is of interest to note
that a4, and a;, are at least twice differentiable functions of god, dod., Ued- Gi. Gy
with j e N;, 7 # 4.

ag, = og + arctan (

Remark 7.5. When (2; defined in (7.36) is substituted into (7,37), the control
u; can be written as .

.2 (- (2 — 250) = 2 N, Bi{®e — x;)) . * ‘
u; = Koty ¥ — (% — wa) — E;Em Biswi — w5) + Goa- (7.44)
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L

It is seen from (7.44) that the argument of ¥ consists of two parts. The
first part,'—(z; = Tig)-or —( — W), referred to as the attractive force
plays' the role of forcing the robot ¢ to its desired location. The second part,
— EjeN‘_ Bijlx; —xj) or — ZJ.GN‘_ Bi;{yi —y;), referred to as the repulsive force,
takes care of collision avoidance for the robot ¢ with the other robots. More-
over, the immediate control u; of the robot ¢ given in (7.37) depends on only
its own state and reference trajectory, and the states of other neighbor robots
j if the points Fp; of these robots are in the circular communication area of
the robot ¢, since outside this area ,@;j = 0, see Property 3) of ;5.

-

Now substituting (7.37) into (7.35) results in

N

N N
¢n = —kouly Y QTU(2)+ 3 0T (Ay + dos + Agi). (7.45)

i=1 =1
Substituting (7.37) into (7.28) results in

G = —kgugd!l’(ﬂi) + Gog + Ay + Agy + Aa;. (7.46]

Step L2

At this step, -we view 1; as an immediate control to stabilize ¢;. at the origin.
As such, we define’
Wie = Wy — Oy, (7.47)

where e, is a virtual control of ;. To prepare for design of the virtual
control ey, , let us calculate Bie. Differentiating both sides of the first equation
of {7.27) along the solutions of {7.47), the third equation of (7. 26), and the
second equation of (7.43) results in

H 30'¢. . 30:¢- : 60:¢, , 6‘a¢,
—wie + g, ~ e oty D0 ‘(s + A +
Pie i e dod ™ F God B Ty { 1
N
Agi+Ag)— Y %%(ui + Ay + Aoy + Aai — (w5 + Ay +
=tai O
Azj + Agj)) + . (7.48)

To design the virtual control ay;,, we consider the following function

N
wrz=¢n +05 Z #7 (7.49)

i=1

whose derivative along the solutions of (7.45) and (7.48) satisfies
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.QTA
m——kouodzoﬂ”m)+20T(A2,+Aa,)+Z¢w( 2 e+

i=l =] i=l1

a : d )
%9, % aqb. (U,ﬁ + Ali + Az,‘ +
Og;

- [
g, + @~ —God — - 3 Upd —
W, + 1 aqoa Qod 8¢0d Qﬁod 8‘1&“ Upd

N
dex
IR 7 & (ug + Ap + Ao + Agi — (15 + Ayj + Aoy + 5‘31')])

gl i O0
(7.50)

It is noted that %ﬂ is well defined since Mﬁl = fo cos{ A JdA and
%)——— fl sin(Ag;. )dA are smooth functlons for all ¢, € R. From (7.50),
we choose the virtual control o as

S~ T4y Bay, . Doy Doy, . By,
iy hidie G 00 ™ 960a® T Bt g (b ) +

Y ba
> ‘?f  + Ap ~ (45 + Ayy)) (7.51)

J=lj#i

where k; is a positive constant.

Remark 7.6. The virtual control ay;, is at least once differentiable function of

Fod» dodv ¢'0d3 Q.ﬁods Uod &od‘ Qis ¢iv Figs ‘?ﬁj with J € Nisj ?é "is and CO‘I]._t&il'lS On]y
the state and reference trajectory of the robot i, and the states of other
neighbor robots j if the points Py, of these robots are in the communication

area of the robot ¢, because outside this area %‘;—‘;ﬁ = ( thanks to Property
3) of 8;;. Moreover, we did not include any nonlinear damping terms in the
virtual control o, to bandle the terms such as ¢ 1y, —B—LA;:,,, ... involving
with the observer errors @ and # ln (7.50). These terms will be cancelled
when we design the interlaced term Z; at-the final stage.

-

Substituting (7.51} into (7.50) results in (after some manipulation):

N N
oo = ~kouly »  QF V(%) - kidf, +

=1 =1

Ha Y. da
z Pie ( 2 A3! Z ) q‘m (A{’n A3j )) +

F=1 gk i

1=

[Gi’se(wu + w‘i) +

1
o=

L

T aa@. N 3&@ 30’% >
2; ~iem— — Z ( = e — —¢j¢) Agi. . (7.52)
PP %45
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Substituting $.51) into (7.48) gives

. L 0TAy b
Pie = —Kidhie — ;’ - 3;‘ (dpi + Agi) ~
Y Ba
s (Agi + Ay; - (Agj + Aaj)) + Wie + 0. (7.53)
jetgw 799

To prepare for the next section, let us compute the term M ;. where

We = [tie wie]T. From the second equation of (7.27), (7.47), and the last

equation of (7.26), we have p

Mioe = —Ci(wod; — Ditoi — Milces, du|” +

Biri — Ci(ai) o +H,-.Q§l(m)5f (7.54)
where
s, = G, + Go,»
- Jag, das, | Bap, . Jas, a day, _
Go, = 5= dod od + F—tiod + 5= bod + 20, 19,+'Z _Bq-‘(ﬂ’ ¥5),
J=ljg#i
N Ja;
&, = TA3*+ Y o (bu - Ayy), (7.55)
F=1,% 9y
and
dﬁri = &ﬁl‘i +Elﬁn
- Ooy Doy oy, | Bay, .. Jag, : 8oy, +
Gy, = Do > God + 3qodq°d+3ﬂodu°d+ Bitog tog + % ﬁbod‘l”a‘i",dﬁi’od'i'
oo Ggras 3 (eafiew-0)
@ 3= 1#: I
5 dova, Doy, oy, . aaw,
G, = B8 g+ g, +r§# (Goei+ Gietao - 40) 150

with 95 = u; + Ay + Az, 6 = 1,..., N. Again, &;, and &y, contain only the
state and reference trajectory of the robot ¢, and the states of other neighbor

robots 7 if the points Py; of these robots are in the communication area of the

robot ¢, because outside this area 5—- 30’" %ﬂ’k- 0, and &= 80"" = 0 thanks

to Property 3) of 3;;.
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7.3.2 Stage II

At this stage, we design the actual control input vector r; for each robot ¢. To
do so, we consider the following fimction

N
1 _—
o1 =grat 5 Y @k Miwie. (7.57)

=1

Differentiating both sides of {7.57) along the solutions of (7.54) and (7.52)
yields

N N N
prr = —koule y_ TW(2) ~ ) kidl + Z Piettiie
i=1 i

i=1
N N
Bay, Oa 3a¢
+ Z (Q;T - ¢ie i - Z ( ¢. fb‘ae o e (ﬁje) ) AZi + Z w;g X
i= Fg: Fel, e O4i;
( - Ci(iy)d; — Dyt — Milds, bw)” + Biri + -HiQs,—l(ni)si) + A
(7.58)
where ¢, and &y, are given in (7.55) and (7.56), respectively, and
N N ba
A= Gields + T Aoy — e ‘Asi + Y {4 - Aaj))
. O
i=1 F=1,j#i
T +z” T (s = A)
TH _a.._a. 3i j=1, ki ‘3,3—;' I 3 34 _
¢ WLA:“ + —3—"1.0, + E =1 (?,—ij + 30:' {As; - Asj))
wgﬂ,-a(ﬁ;,-)ai) T (7.59)

o

and we have used (7.55) and (7.56). After some rearrangement, we can write
Aas

.

N N
A= [y DT =Y (A A TQ7 () Xs (7.60)

i=l1 i=1

where we have used (7.25), and Ay; and Ay; are given by
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v N
Bua = (07 st g2 - 5 [poe g, S0

\ O 57t O 9q
3(1’5. N 30’{,. 30":,
NS T
dg; ¥ ( dqi; Oy )
Oevg, Y U oo 5
Az( = 4 =t )]ASi .
Jq; J.:lz‘j# ( By Oy )
3 [N N 80‘&,.
Toi = die — wLMLTi(l); - ;;f ~dp > G (76)
* j=lg#£i Tt

where C;(1) is Ci{;) with t'b, replaced by 1, Az = [cos(¢y) sin{¢:)]T, 41
and A; are defined by [4; As] = w] M Now, we take the following total
Lyapunov function candidate

vTor =i+ Z Vou (7.62)

i=l

whose derivative along the solutions of {7.58) and {7.23) is

N N N
pror < ~kouly Y V(L) =Y kidl = D pasl Xil* +
=1

i=1 i=1

N N
I} Bavy, bl
Z¢:ewae + z (QT - ¢se O-'¢, - Z ( Q’,p‘ ‘f’ie - 3T}¢J ‘f’je)) 424 +
74

=1 j=bgsi O35

N
Z w;‘;( — Cilaby)to; — Didoe — Mi[ds, Gu,)” + Biri + HiQs_"}(m]Ei) +

i
X

D’]z

([Als A)TQ (mi) - uxT)X':'- . (7.63)

..
I
—

The inequality (7.63) suggests that we design the control r; and the interlaced
term =; a8

—=-1

=B ( Liwie + o () + D [a;,‘ aw,] +M; [043. Gy ] T
- MQMm)E: -

(R )

5= (s A" 00) (7.64)
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where Ag; = [cos(¢:) sin{¢;)]T, and L; a symmetric positive definite matrix.
Substituting (7.64) into (7.54) gives

Hidjie = "{E + Li)wie — H [éﬁ. g’u);}r - 6'(153)&"' -
T 8a¢. Dag, 3
[(Q ~ it~ D ( 50 Pie = 7y, 45“) )Ag"] {7.65)

ie

where g, and &y, are given in the last equation of (7.55) and (7.56), re-

spectively. By construction, the control 7; and the interlaced term =; given
in (7.64} of the robot ¢ contain oaly the state and reference trajectory of the
robot i, and the states of other neighbor robots j if these robots are in a
cireular area, which is centered at point Fy; of the robot ¢ and has a radius
no greater than R;. Now substituting (7.64) into (7.63) results in

*
»

N
Pror < —kouZy Z QT (%) - Z kit — > @E(Di + Li)wie —

i=1 i=1 il
N N .
> pall Xl (7.66)
=1
For convenience, we rewrite the closed loop system consisting of (7.46), (7.53),
{7.65), and (7.21) as follows:

Gi = —kot2q¥ (§%) + doa + A1i + Do + Ass,
27 Ay, _ Day,

bie = —kithie — Y % - (Az + Axi) -
e ‘
N 8Cl'¢,
> S (Aza + Bgi = (Agj + Agy) ) + wie + i,
) :‘=1J#1

-

Hid’ie = _(Di + Li)wic - Mé[&ﬁ; &w.] - C'(ﬁ’:) ;
Bexg, fa 30 —
[(‘QT - ‘t’ie‘ﬁt" - Z;'\f_q‘j;h ( aq:; ¢ae - 3qj ¢'Je))A2£] ,

ie

L _——1— - -

Xi=-Q(m)M; D:Q () Xi - =2 (7.67)
We now state the main result of this chapter in the following theorem.

Theorem 7.7. Under Assumption 7.1, the control 7; and the observer X;
given in (7.64) and (7.14) for the robot i solve the formation control objective.
In particular, no collisions between any robots can occur for allt =g 20, the
closed loop system (7.67) is forward complete, and the pésition and orientation
of the robots track their reference trajectories asymptotically in fhe sense of

(7.6).
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7.4 Proof ©f Theorem 7.7

We first prove that no collisions hetween the robots can occur, the closed
loop system (7.67} is forward complete, and that the robots asymptotically
approach their target points or some critical points. We then investigate stabil-
ity of the closed loop system (7.67) at these peoints, and show that the position
and orientation of the robots asymptotically track their reference trajectories.

+Proof of no collisions and complete forwardness of closed loop system.
From (7.66) and properties of the function ¢ , see (7.38}, we have ¢ror <
0 < 0, which implies that wror(t) £ vror{ts), vt 2 to. With definition of the
function pror in (7.62) and 1ts components in {7.49), {7.30}, (7.31), (7.32),
and (7.22), we have

-

[—n(m 37 B(t) + 3640) + @b O Fimie(t) + 5 XT (O Ki(0)] <

JeM;
N
Z[‘h(to)+ T Bistto) + 58 lto) +
i= FEN;
Sk to)mielta) + 5 X7 (t0) Xilto)] (7.65)

for all £ > ¢y > 0. From the condition specified in item 4) of Assumption 7.1,
and Property 5} of 3;;, and definition of ¢;, @;e, we have the right hand side
of (7.68) is bounded by a positive constant depending on the initial conditions.
Boundedness of the right hand side of (7.68) implies that the left hand side
of (7.68) must be also bounded. As a result, 3;;(¢) must be smaller than some
positive constant depending on the initial conditions for all ¢ > 4y > 0. From
properties of 3, see (7.34), llg;;(t)) — {B; + R;) must be larger than some
positive constant depending on the initial conditions denoted by €3, i.e. there
are no collisions for all £ > {5 > 0. Boundedness of the left hand side of (7.68)
also implies that of (g;(£) — qsa(t)), Gie(t}, @ie(t) and X;(2) for all ¢t > to > 0.
Therefore, the closed loop system (7.67) is forward complete.

+Bquilibrium points. Since we have already proved that there are no col-
lisions between any robots, an application of Theorem 8.4 in [58] to (7.66)
vields

Jlim (kuuod(t) ool (o) + Z ki, () +

i=1

wa;(t)(ﬁ FL)ma®) + 3 pudl K @) =o. (169

i=1
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By noting that lim,—,eo u2,() # 0 as specified in item 5) of Assumption 7.1,
the limit equation (7.69) implies that

lim £2;(t) =0, im ¢i(t) =0, lim i {t) =0, lim X,(t} =0
T—ro0 t—oo t—oo Sl ]

Tt is of interest to note that lim,_.« X;(t) = 0 implies that lim,_.o @;(t) =0
This implies that the estimate of the it robot linear, #;, and angular, @, veloc-
ities tend to the actual ones v;(t) and w;(t}. By construction, lim;—o §2(t) =0
and Himy .o ¢ () = 0 imply that lim,_ o (& (t) — doa(t)) = 0. Moreover, from
definition of §2; in (7.36), lim; .o £2;{t) = 0 means

Jim (g:(0) - aiat) + 3, Blza()) = 0. (7.70)

FeM;

The limit equation (7.70) implies that g(t) = {7 () e (¢), .., a% (£)fE can tend
to gt = [qly a3go - Ihal” since Blug,u=liaan = O (Property 1) Jf 8;), or
some vector denoted by g = [q7, ¢i......qk.]7 as the time goes to infinity, i.e.
the equilibrium points can be g4 or g.. It is noted that some elements of ¢,
can be equal to that of ¢z. However, for simplicity we abuse the notation, i.e.
we still denote that vector as g.. Indeed, the vector ¢, is such that

Dl'lq:q,_. = [Qs — Gid + Z 6:_1‘;‘3]

F L H

=0,Vi=1,.,N. (7.71)

=4

To investigate properties of the equilibrium points, ¢4 and ¢,, we consider the
first equation of the closed loop system {7.67), i.e

q'v%- = —kgugdip(ﬂ,:) -+ ch + Alz + AZ:’ + A3i- (772)

Since we have already proved that the closed loop system (7.67) is forward
complete, and limy—.oo @ie(t) = 0, iMoo @iet) = 0, and limy_,oo Xi(t) =0
imply from the expressions of Ay;, Ay and Ag;, see (7.29) and (7.25), that
limy oo (A1 (#)+ Agi (£} + Aqi(8)) = 0, we treat A;(£) = Ay (1) + A0 (8) + Asi(?)
as an input to (7.72) instead of a state. Moreover, we have already proved that
the trajectory, ¢, can approach either the set of desired equilibrium points de-
noted by g4 or the set of undesired equilibrium points denoted by ¢, ’almost
globally’. The term ’almost globally’ refers to the fact that the agents start
from a set that includes both condition (7.2} and that does not coincide at any
point with the set of the undesired saddle point g.. Therefore, we now need to
prove that gq is locally asymptotically stable and that ¢. ig locally unstable.
Once this is proved, we can conclude that the trajectory g approaches g4 from
almost everywhere except for from the set denoted by the condltgon‘(?' 2) and
the set denoted by g., which is unstable,
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L]

+Pmpertz€3 of ethbmum points. The system (7.72) can be written in a
vector form as

G = —koros¥(q, ga) + vec(doa) + vec(d;) (7.73)

where W (q,¢q) = [T ) OT{2), .. OT{20))T, veclfod) = (655
G54 gL)7, and vee(A;) = (AT, ..., AT, ..  AL]T. Therefore, near an equi-
librinm peint g,, which can be either g4 or g, we have

= —koul, O%y(q, qa /3q| (g = g0) + vec(goq) + vee( (A (7.74)

where the (5**, jt*) element of the matrlx -—1& s A 75?}_1%; Ai4) €

N with N being the set of all agents A snnple ca]culatlon shows that

i’ BQ r r
(1+ Zﬁ;,)f + Z 00 5 gy = Pl - 0. (7.79)

el JEM;

foralli=1,..,N,j € N;,j # i, where I, denotes the identity matrix of size
n. Let N* be the set of the agents such that if the agents ¢ and j belong to the
set N* then [lqi;|| < by;. Next we will show that gq is asymptotically stable
and that g. is unstable.

-Proof of qq being asymptotic stable. Using properties of 3;; and ¥ listed
in (7.34) and (7.38), we have from (7.75) that forall¢ =1,.. N2 # j:

(1) . 812 , T
= e =0, 5— =In+ ) Bija%ia9i;
. ns Mijd s ] n ijadtiidiijdy

0 gqs K 99i lg=ga :erN,-

a1

Bor| = Padiasa (7.76)
9 =q4 .

where By = S|, . and 8, = B |qa;=qw' with gija = gia — gja. We

consider the function
Va=+v1+llg-ql®-1 (7.77)

whose derivative along the solutions of {7.74) with g, replaced by g4, using
(7.76), and noting that g,q = §;4 satisfies

N
- 1
R ( — kot 3l - aiall® -
V1+ g - aall? Z,: '
kOugd Z sgd (%3(1(%_1 q:;d]) + Z(Qa q;d) 4A; )

(6, 1)EN it i=1

v/% S s - gl + z A (7.78)
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since 37}, > 0, see Property 1) in (7.34). The last inequality of (7.78) implies
that g4 is asymptotically stable becaube limy, o0 24{t) # 0, and we have al-
ready proved that limy..qo 8;(t) =

- Proof of g being unstable. Again using properties of 3;; and 4 in (7.34)
and (7.38), we have from (7.75) that

B (1) 8, T
P =1n, — 1+ E ﬁ\;r‘ Iﬂ + S_ ﬂa ieije@ijes
LR 99: |, FeN; JEF; ’ ’
8.‘?{ ] " i
- = =Bije — BijeGijedije 7.79
B4 s J ijedijedis ( }

for all ¢ = 1,....N,i # j, where ¢ijc = Gic — Qjcr B = Bi; gis=gise and

e = Bl S . Since the related collision avoidance functions 8;, see (7.32),
are specified in terms of relative distances between agents and it is extremely
difficult to obtain g. explicitly by solving {7.71), it is very difficult to use the
Lyapunov function candidate V, = 0.5(|g~ ¢.|| to investigate stability of (7.74)
at ¢.. Therefore, we consider the Lyapunov function candidate

Ve=V1+]§-df2-1 (7.80)
where § = g7, 455, .- ¢in+ BBar s Gy - Qg1 p]|T B0 G = [afoc: e T ner

@Fscr s Gancr - —1.Ne) |- Differentiating both sides of (7.80) along the so-
lution of {7.74) with g, replaced by g gives

kﬁuod Z 2 kotdy
lgis — qisell® — = Z {1+
\/ 1+ liq QC (6,1 E NN I+g - gl {i.jyeM"

kou, N
Nﬁ:'jc)"%j ‘Qijc”z - \/T-':ﬂ;-d—"tfl_fr Z ch(quc(qU ch)) +
el 4,5)16N"
1
D (g — gije) (Dam 45) (7.81)

————
1+ "q - QC” (i, j)EN

whete i # j and (7.79) has been used. To investigate stability properties

of 4. based on {7.81), we will use (7.71). Define (2. = 2. ~ 24, V(i,j) €
{1, ..,N}, i -',"-‘ J where .Q,;c = .Q,:lq=q£ = 0, see (7?1) Therefore .Q,'jc =0
Hence 3 ; 1yen- ijef2ije = 0,4 # j, which by using (7.71) is expanded to

Z (Q;gc(‘?ijc = Gija) + Nﬁ;jcqg;cf?sjc) =08
(i, j)EN" -

= Z (1 + Nﬁ:Jc)Qagc(hJc - Z QtJCQtJd » (782)
(i.5)€N" (h.4)EN" ’ '
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where ¢ # j. Fhe sum Z(i. Sen qf;cq‘-jd is strictly negative since at the point,
say F, where qi; = @ijar V(i,j) € N* 4 # j all attractive and repulsive forces
are équal to zero while at the point, say C, where g;; = ¢i;c V(i,7) € N*, i #
the sum of attractive and repulsive forces are equal to zero (but attrac-
tive and repulsive forces are nonzero). Therefore the point, say O, where
gi; = 0, ¥{z,§) € N*, i #£ j must locate between the points F and C for all
{i,j) € N*,i # j. That is there exists a strictly positive constant & such that
Z(s,j)eN‘ Qg'cq"jd < —b, which is substituted into (7.82) to yield

S (L4 N8 alicse < =bi # j. (7.83)
(i.5)eN" P

Since G’chnc > 0.¥(4, ) € N #£ j, there exists a nonempty set N** C N
such that for all (3,7} € N**,¢ # 7, (14 Nj3j;,) is strictly negative, i.e. there
exists a strictly positive constant b™* such that (1 4+ Nf;,) < =6, ¥(i,j) €
N**,i # 7. We now write (7.81) as

A k[)ugd 2
Vo= - ——2—r Z fais — gizell”™ +
14|l — ¢l (. J)EHyN*
2
Z {1+ N3, Jc)“‘i’u Q’mc"2 +N z ‘Jc q'JC(qU Q:ijc))
(4.J)EN-\N" (et

kou®
5 1+ N8l — aisel® +
1+ "q - ch (4.3

. .
T (a5 — qize) (i — 4y) (7.84)
L+llg-al® {,-;N T !

where i # j. We now define a subspace such that q;; — ¢ij5c = 0, V(4. 4) €
Ny N** and qi];c{q,-j ~ gije) =0, ¥(i,§) € N*,i # 4. In this subspace, we have

Ve= 1+ 3 llass — el - 1,
(i,71EH

o Kouoa L yene« (L+ NG )l — el

=
V1 Zaeh g ~ael?

Ligen+ (@5 — qiye) (4i — 45)
\/l + Z{i.j)EN"“q,-j —qije[?

Using (1 + N3j;,) < —b", ¥(i,j) € N**,7 5 4, we can write (7.85) as

(7.85)
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Ve= 1+ Y oy —guel? -1,
{4,y
Vo b koud Ve~ 3l - 4l (7.86)
(f,j1EM~

Now assume that ¢, is a stable equilibrium point, i.e. limy_ o g () — giell =
d;,¥i € N with d; a nonnegative constant. Note that N** C N, we have
limy—uoo |6:{E) ~ giell = di,¥i € N**, which implies that lim,_ Z(i,j)eﬁ.‘
[t () ~ quzell = d**,¥{i,4) € N**,¢ # j with 4*" a nonnegative con-
stant, since ¢; = ¢i — ¢ and Gije = Qic — Gjc. We now consider two cases:
2pene- gi{to) = qijell # 0 and 31 senes 1gii{to) — gizell =0

Case I: Yy, yenes 1935 (t0) = Gizell # 0. Since limy—oo uZy(t) # 0 (Assump-
tion 1} and we have already shown that lim,_.qo A;(t) = 0,¥i € N, V, in (7.86)
is divergent. Therefore, 3~ ; »ews» I1:5() ~ @ijell cannot tend to a constant but
must be divergent. This contradicts lim;—.. Z(i,j)eN" llis (4} — qizell = d**,
i.e. g, cannot be a set of stable equilibrium points but must be a set of an
unstable ones in this case.

Case II: 37 ; senes 119i5(t0) — gijell = 0. There would be no contradiction.
However this case is never observed in practice since the ever-present physical
noise would cause 3~ ; - enes 1955 (t*) - gijel to be different from 0 at the time
£* > to. We now need to show that once the sum 3, on-- ll9i; (8"} — qizell 18
different from zero, this sum will not come back zero again for all £ > ¢*, i.e.
the set of undesired equilibrium points g, is not attractive. To do so, consider
(7.86) with the initial time ¢* instead of tp, i.e.

Velt) = 1+ Z llgis () = giscll® — 1,

(§,F)EN* ,
Vi) 25 ke V) - S 148 = 450
(i, 7)en~
for' ¢t >¢* and Z llgs5 (£*) = qizell = 67 (7.87)
(F.IEN

where 8” is a positive constant. Since limy .o u2,(t) # 0 (Assumption 1) and
we have already shown that lim,_ o 4;(t) = 0,¥i € N, V, in (7.87) is divergent
for ¢ > t*. Therefore, 3 ; -ep-- 1935(t) — gijell, for ¢ > £, chnnot tend tp a
constant but must be divergent. This contradicts lim,—so 3 ;. PR llgs5(t) -
¢ijcl| = d**, i.e. g. must also be a set of unstable ones point in thls"case Proof
of Theorem 7.7 is completed. [
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¥
7.5 Simulations

yim]

4, N1

lia, - ¥

1% n L L] 135

Tene 8]
Fig. 7.3. Simulation results with 10 rebots.

In this section, we simulate formation control of a group of ¥ = 10 mobile
“tobots to illustrate the effectiveness of the proposed controiler. The physical
parameters are taken from Section 1.3.1, Chapter 1, and R, = 18, R, =5i=
1,....,N. The robots are initialized as follows: z; = Rysin({i — 1)27/6),y; =
Rpcos((i — 1)2n/6),w1; = OQ,wo; = 0, where Ry = 9 for ¢ = 1,...,6 and
By =5 fori = 7,...,N. The initial values of &;,i = 1,...,N are taken
as random numbers between 0 and 2x. The initial values of velocity es-
timates of the robots are taken as follows: &y = &e; = 0.1rad/s. The
reference trajectories are taken as g¢ = {5 10sin(0.1s)]7,4 = 1.5 and
I; = 10[sin{(: — 1)27/N) cos({i — 1)2x/N)]T. This choice of the reference tra-
jectories means that the common reference trajectory goq forms a sinusoidal
trajectory, and that the desired formation configuration is a polygon whose
vertices uniformly distribute on a circle centered on the common reference tra-
jectory and with a radius 10. The functions 3, (7, j) € N, # j are taken as in
(7.33) with p = 4,a;; = 2R, bi; = R;. The function () is taken as arctan().
The control gains are chosen as kg = 0.1, &; = 2, L; = 41> with I an identify
matrix of size 2. Indeed, the above choice of kg satisfies condition {7.39). Simu-
lation results are plotted in Fig.7.3. It is seen that all robots nicely track their
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reference trajectories. During the first few seconds. the robots quickly move
away from each other to avoid collisions then track their desired reference
trajectory, see sub-figure A) in Fig.7.3, where the trajectory of the robot N is
plotted in the thick line. In sub-figure B), we plot product of all gaps between
robots: Gapan = [, jyemiz;{gis | —(Ri+R;)). It is seen that Gapay is always
larger than zero. This means that (| g, | — (Ri+ R;} > 0, ¥(i,3) e N,t > 0, ie.
no collisions between any agents oceurred. The distances between the robot
N and other robots are plotted in sub-figure C) of Fig.7.3. Clearly, these dis-
tances are always larger than Ry + B; =36,i=1,.., N — 1, i.e. there are no
collisions between the robot N and all other robots in the group. The control
inputs fr v Tan]7 of the robot ¥ are plotted in sub-figure D) of Fig.7.3. Sub-
figure E) in Fig.7.3 plots the tracking errors oy — ng, YN — YNd PN — DNa
of the robot N. Indeed these errors tend to zero asymptotically. Sub-figure
F) plots the observer errors &y and t@y. It is seen that these errors asymp-
totically converge to zero because the interlaced term =; for all i € N | For
clarity, we only plot the results for the first 20 seconds in sub-figures B}, C),
D) E) and F).

7.6 Notes and references

Cutput-feedback tracking control of land, air, and sea vehicles has been solved
for the case of fully actuated [17], pp. 311-334. The main difficulty of design-
ing an observer-based output feedback for Lagrange systems in general is
because of the Coriolis matrix, which results in quadratic cross terms of un-
measured velocities. In addition, nonholonomic constraints of mobile robots
make the output-feedback problem challenging. For example, many solutions
proposed for robot manipulator controt ([17] and references therein) cannot
directly be applied. Recently, output-feedhack tracking of mobile robots was
solved in [16]. In this work, based on a special’ coordinate transformation the
exponential observer is designed to estimate the robot velocities. The control
design s then based on the popular backstepping technique 12]. Some other
results on output-feedback control of the single-DOF Lagrange systems were
addressed in [19] (high-gain control). [11], and {20] for a nonlinear benchmark
system. In general, nonlinear damping terms |12] are usually used to deal
with observer errors in output feedback control control of nonlinear systems.
The purpose of these nonlinear damping terms is to dominate nonlinearities
multiplied by the observer errors. However, for formation control problem ad-
dressed in this chapter it is impossible to include nonlinear damping terms to
do the job due to nonholonomic constraints and move importantly collision
avoidance between the robots taken into account. Therefore, the interlaced
observer is essential for formation control design in this chapter.'*[‘h(_e material
in this chapter is based on the work in [62] and {63].

L]
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Mathematical Tools

This appendix presents necessary mathematical tools, which are used in the
control design and stability analysis in the book. Some standard theorems,
lemnmas and corollaries, which are available in references, are sometimes given
without a proof.

A.1 Lyapunov stability

Stability theory is important in system theory and engineering. There are
various types of stability problems that arise in the study of dynamical sys-
tems. This section is concerned with stability of equilibrium points. Stability
of equilibrium points is often characterized in the sense of Lyapunov, a Rus-
sian mathematician who laid the foundation of the theory, which now carries
his name. Roughly speaking, an equilibrium point is stable if all solutions
starting at nearby points stay nearby; otherwise it is unstable. It is asymptot-
ically stable if in addition, all solutions tend to the equilibrium point as time
approaches infinity. These kinds of notations will be mathematically made in
this section. The material in this section is, mainly taken from [58], [12] and
[64].

Consider the following nonautonomous system
&= f(t,x) {A.1)

where f : {0, 00) x D — R® is a piecewise continuous in ¢ and locally Lipschitz
inx on [0,5) x D and D € R® is a domain that contains the origin z = 0.

A.1.1 Definitions

a
Definition A.1. The origin ¢ = 0 is the equilibrium point of (A.1)4f

x
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.Y . o =0.vex0. (A.2)

Definition A.2. A continuous functiona : [0,a) — [0,00) is said to belong
to class K if it is strictly increasing and a{0) = 0. It is said to belong to class
Ky ifa=00 and a(r) = oo as r — oo,

Definition A.3. A continuous function §: [0,a) x [0,00) — [0, 00} is said to
belong to class KL if, for each fixzed s, the mapping 3(r, 8) belongs to class K
with respect to v and, for each fired r, the mapping B(r, s} is decreasing with
respect to s and B(r, ) - 0 as 5 — oo,

Definition A.4. The eguilibrium point x =0 of (A.1) is
1) stable if, for each ¢ > O thest is 6 = 8(¢.to) > 0 such that
lz@a)ll <6 = z(t) <&, V2t 20 {A.3)

2} uniformiy stable if, for each € > 0, there is § = §(e) > 0 independent of
g such that (A.3} is satisfied

Funstable if it is not stable

4)esymptotically stable if it is stable and there is a posilive comstant
= ¢{to) such that z{t) — 0 ast — oo, for all [[z(to)l] < ¢

&Juniformly asymplotically stable if it is uniformly stable and there is a
positive constant ¢, independent of tq, such that for all ||z(fg}]| < ¢, 2(t) - 0
as t — o0, uniformly in to; that is, for each n > 0, there is ' = I'(n) > 0
such that

"a

=)l <n V2 to+ Tk Vizlto)l < (A.4)

6)globally uniformly asymptotically stable if it is uniformly stable, 8(c) con
be chosen to satisfy ime_ o, 6{2) = o0, and, for each pair of positive numbers
1 end ¢, there is T ="1T'(n,c) > 0 such that

lx(e) < n, Yt = to +1(m, ¢}, Yzlto)l <c. (A.5)

Definition A.5. The equilibrium point x = 0 of {A.1) is exponentially stable
if there exisl positive constants ¢, k and X such that

@)l < kllz{tolle 1), Ye >80 20, ¥ lzlto)l <c  (A6)

and globally exponentially stable if (A.6) is setisfied for any initial state x(tg).
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Definition A.6. The equilibrium point £ = 0 of (A.1} is K-ezponentially
stable if there exist positive constants ¢ and A and o class K function o such
that

Izt < a(ilx(ta)l) e 271, Vi 28 20, ¥ fzto)ll < c (A7)
and globally K -exponentially stable if (A.7) is satisfied for any initial state
I(to).

Definition A.7. The solutions of (A.1) ere
1} uniformly bounded if there ezists a positive constant ¢, independent of

to > 0, and for every a € (0,¢), there is § = B(a) > 0, independent of t, > 0,
such that

>
3

fe(to)f <o = llz(t)| <8, Yt 2 b (A.8)
2) globally uniformly bounded if (A.8) holds for arbitrarily large a.

3) uniformly ultimately bounded with ultimate bound b if there exist positive
constants b and ¢, independent of t¢ > 0, and for every a € (0,¢), there is
1 =T'(a,b) > 0, independent of ty > 0, such that

lz{to)l e = llz@)]| <b YVt 2t +T (A.9)

4) globally uniformly ultimately bounded if (A.9) holds for arbitrarily large
a.

Definition A.8. The system
= flt,z,u) (A.10)

where f 18 piecewise continuous in ¢t and locally Lipschitz in z and u, is said
to be input-to-state stable (ISS) if there exists a class KL function 8 and a
class K function v, such that, for any input u{-) continuous and bounded on
[0, 00), the solution exists for all t > o > 0 and satisfies

[ () < B(latto)l £ ~ ta) +7 ( up,_ ||u(r)|[) TR

o

A.1.2 Lemmas and theorems

L]
The following lemma provides equivalent definitions of uniform stability and
uniform asymptotic stability by using class K and class KL fu;lctions.

-
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Lemma A.9."The equilthrium point £ = 0 of (A.1) is

1} uniformly stable if and only if there exist u class K function o and a
positive constant ¢, independent of tg, such that

l=()]l < a(lz(to)l), Yt 2t 2 0. ¥ [lx(to)ll < c (A-12)

2) uniformly asympiotically stable if and only if there exist a class KL
function 3 and a posilive constant ¢, independent of iy, such that

le < Bt t —to), VE> 10 20, ¥ flzlto)ll <c  (A13)

3) globally uniformly asymplotically stable if and only if inequality (4.13)
is satisfied for any initial state x{tg).

Proof of Lemma A.9. See [58].

Lemma A.10. Assume that d: R® — R® satisfies

ad]  [ad]” .
Pltg;r—]-F[g:;] P>0,VzeR {A.14}
where P = PT > (. Then
(x — y)" Pd(x) —d(y)) >0, Ya,y € R", {A.15)

Proof of Lemma A.10. See [65].

Lemma A.11, The foliowing nonlinear interconnected system
i‘l=fl(tsxlsx2)+gl(tszl!$2)uv (A 16)
2y = falt, 21,02) + ga(t, 21, 22)u ’

where z; € R, i = 1,2, fi(t, 21,22} are locally Lipschitz in x; and piece-
wise continuous in {; u € R is the control input, and ga(t, x1,22} #0, ¥ £ =
0, x; € R, can be transformed to the following system

# = n(t 21, 22), A
: A7
£z = ‘}'2(t': z] !352) + (P?(f's Z14 1132)“ ( )

Proof of Lemma A.11. Define

21 =z + 7(t, 21, 22} (A.18)

where #x(t,z1,za) is to be determined. Differentiating both sides of {A.18)
along the solutions of (A.17) yields
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b= (aﬂ%%l + 1) filt.zy, ) + a_"'{_‘éi;ilfz(t, 1,22} + ﬁngt,g;.nl+
(2422 4 1) ga(t, 20, 22) + orlteiza gyt vy.a2) ) u

{A.18)
Now choosing the function #(¢, z;, 22} such that

n(t,zy, o Ot rq,
(( (32 2]+1)91(t,a:1,:cz)+_’E(a_z;‘_"z_}gz(t,ml,xg))=g (A.20)

results in {A.18), where the functions (¢, zy, 2} and ¢2(f, 2;,x2) are defined
as

N(tz1, @) = (2RI 1) fu(t 0, w0) + ZHEEL2D o4, 3, ) + 22z,
Ta(t. 21, 22) = falt, 2y, 72},
wa(t, 21, %2} 1= ga2(t, 71, 72)
(A.21)
with z; being solved from {A.18) and substituted in.

Remark A.12. 1). The success of the above lemma depends on the possibility
of finding a solution to the partial differential equation (A.21). Solving this
partial differential equation is difficult in general but might be simple in some
specific cases such as strict-forward second order systems and the ship systems
in this thesis.

2). In some cases, designing a control input u for the transformed system
(A.18) is simpler than for the original system (A.17).

The main Lyapunov stability theorem, which has a number of applications
in studying stability of (A.1}, is given helow.

Theorem A.13. Let z = 0 be an equilibrium point of (A.1) and D =
{2 €R"||zy<r } Let Vi DxR™ — RY be a continuously differentiable func-
tion such that Vi > 0, Yxr € D, * o,

7 (2]} < V()< 9 (=)},
G + 5o f(tx) < = (Il

Then the equilibrium point is

(A.22)

1) uniformly stable, if vy and v are class K functions on [0,7) and 43 2 0
on [0,7);

2) uniformly asymptotically stable, if v1, v and v3 are class K functions
on {0,7); '

3) exponentially stable if v,(p) = k;p™ on [0.7) , b > 0, 2 )’0,‘ i=1,2,3;
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4) qlobal!y Jmtfonnfy stable if D = R", 11 and v; are class K, functions,
and 73 >0%on R,

5)globaﬂy um’fo'nnly asymptotically stable if D = R™, 41 and 2 are class
Ko functions, and v is a class K function on RY; and

6) globally exponentially stable, if D = R®, y(p) = kip™ on RY | k; >
0,a>0,:=1.223.

Proof of Theorem A.13. See [12].

Theorem A.14. Let £ = (O be an gquilibrium point of (A.1). Let V : B® x
R — Rt be a continuously dsﬁer‘enta?able function such that

8 (f|l|i) < V(i‘ t] < ‘Tz(”ﬂfli),

Yt >0, ¥z e R where 1 and ¥y are class Koo ﬁmctwns, and Wis a contin-
uous function. Then all solutions of (A.1} are globally uniformly bounded and
salisfy

(A.23)

Jim W(z(¢)) = 0. (A.24)

In addition, if W(z) is positive definite, then the equilibrium point x = 0 is
globally uniformly asymptotically stable.

Proof of Theorem A.14. See [12].

The following Lyapunov-like theorem is useful for showing uniform bound-
edness and ultimate boundedness.

Theorem A.15. Let D C R* be a domain that containg the origin and V :
[0.00) x D — R be a continuously differentiable function such that

oq (Jlz) < Viz.t) < az (fix]),

O+ ) < W (@), Vil 2 >0 (A.25)

Vi>0,Vx € D where oy and ag are class K functions, and W is a con-
tinuous positive defintte function. Take r > O such that B, C D and suppose
that

i < ag{ar(r)). (A.26)

Then there exists a class KL function 8 and for every initial state x(to),
satisfying ||lz(to)] < ag'(an(r)), there is T > 0 (dependent on x(to) and p)
such that the solution of {A.1) satisfies
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el < Bzt t—to), Vo St S te+ T,

lz(®)] < a3 tar(r), Yt = to+T. (A.27)

Moreover, if D = R™ and «, belongs to class Ko, then {A.27) holds for
any tniftial state z(to) with no restriction on how large p is.

Proof of Theorem A.15. See [58).

A.1.3 Stability of cascade systems
Consider the following cascade system

21 = fl(t' Z]) + g{tv 21, 2‘2)32v
2y = f(t, 20} (4.28)

where z; € R?, 2, € R™, fi(t, z1) is continuously differentiable in {¢, z;) and
Faolt, 22}, ¢lt, 21, 22) are continuous, and locally Lipschitz in 2o and (2, 23)
respectively.

If we set zp = O in the first equation of (A.28) becomes 3, = fi(t, z1).
Therefore we can view the first equation of {A.28) as the system

s = it ) (A.29)
which is perturbed by the output of the system
122 : 32 = falt, 22). (A.30)

Now assume that the systems (2 and §2; are asymptotically stable at the
origin, i.e. (A.29) and (A.30} yield limy— o 27(2) = 0 and limy_.o 22(¢) = 0,
respectively. Based on these assumptions, it is plausible to conclude that the
system (A.28) is asymptotically stable at the origin in general. In many cases,
the solution z)(t) of the system (A.28) gots to infinity in finite time. This
phenomenon can be seen from the following simple cascade system:

-

2y = —k1z; + 2211222, .
29 = —kozg (A.31)

where k; and ks are strictly positive constants. It is obvious that the
subsystems %, = —k)z; and £; = —Kkszs are globally exponentially stable at
the origin. It is straightforward to show that the solution of {A.31) is

pe (t) _ z1{to){k1tka)
N = 21 (t0)2a{tp)e =21 ~10) +{ky +hz— 21 {t0) 22 (20) e 1= 20) 2 (A.32)
22(t) = zp(to)e~F2{=to), .

It is seen from (A.32) that if zi(t0)22(t0) < ky + k2, then both % () and
z(t) are bounded and converge asymptotically and exponentially to zero,
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respectively. If z;(tp)ze2(to} = k1 + ko then 29(t) is still hounded and con-
verges expbnentially tozero but z{f) tends to infinity exponentially fast. If
z1(toz2(to) > ki £ ko, the situation is catastrophic, i.e. z;(t) tends to infinity
when t — o + t; with

N 21{to}22(to)
v ky + ke & (zl(ttl)zz(to) - (k1 + kg)) : (A.33)

The following theorem gives sufficient conditions of stability of the cascade
system {A.28) based on stability of (A.29} and (A.30) and the connected term
g(t, 21, 22). :

Fs
Theorem A.16. Consider the following assumptions:

F

1) The systems (A.29) and {A.30) are both globally uniformly asymptoti-
cally stable (GUAS) and we know ezplicitly a C! Lyapunov function V (¢, z1),
two class Ko functions aq aend ag, ¢ class K function oy, and a positive
semi-definite function W{z1) such that

*»
a1 (Iz1]) € VL, 2) < az (|all)

e+ Lt 21) < =Wz, (A.34)
195]| < o -

2) For each fived 2o there exists a continuous function A : Bt — R with
lim,_ oo A{s) = 0 such that

< Allzaf)) Wz1). (A.35)

ov
’fi‘_zng(t' z1,22)

3) There exist continuous functions § : RY — R* and a5 : R, — R* such
that

llg(2, 21, 22)l| < 8 (llz2ll) s (2111 (A.36)

and a continuous nondecreasing function ag : RY — R, and a nonnega-
tive constant @ such that
ag(s) = oy (01_1(3}) as (a7'(9)
Lo =]
ds (A.37)
{ by =00

4) For each r > 0, there exist constants x > 0 and 1 > 0 such that for all
t>0andall |z <r

<xW(zmhvial 29 (A.38)

av
-y t‘ L]
” 7 g(t, 21, 22)
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5} There exists a class K function & such that the solution z(t) of (A.30)
salisfies

/ st} < ¢ (lzat)) (A.39)
1,

Then we can conclude that if

Assumptions 1) and 2), or

Assumptions 1), 3) and 4), or

Assumptions 1), 3) and 5)

hold then the cascade system (A.28) is globally uniformly asymptotically
stable.

Proof of Theorem A.16. See [66].

A.2 Input-to-state stability

The material in this section is mainly taken from {67).

Definition A.17. The system
= f(t,z,u) (A.40)

where f is piecewise continuous in t and locally Lipchitz in x and u, is said to
be input-to-state stable (ISS} if there exist ¢ class KL function 3 and a class
K function v, such that for any z(0) and for any input u{.) continuous and
bounded on [0, oo)the solution exists for all t > 0 and satisfies

le(t)] < B(lx{te)}, t — to) + ¥ (sup fu(r)lo<rss) (AA41)
Jor all ty and ¢ such that 0 < g < ¢

The following theorem establishes the equivalence between the existence
of a Lyapunov like function and the input-to-state stability.

Theorem A.18. Suppose that for the system (A.40) there exists a C! func-
tion V Ry x R* = R, such that for allz ¢ R" and u ¢ R",

nilzl} € Vit,z) < ’72(|$D

T a e on) (A

where v, v2 and p are class K, functwns and y3 is a K class fmctwn Then
the system (A.40) is ISS withy = 4, o1 op

lz| = p(jul) =
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Proof. If #(to) is in the set
' Bto = {z € IR™ |[z] < p(sup u(r)lrz20) } (A.43)
then z(t} remains within the set

Sto={x € IR" [jx| <" o v2 0 p(sup [u(r)lre) } (A.44)

for all ¢ > #. Define B = [tg,T) as the time interval before w(t) enters Rty
for the first time. In view of the definition of Rty we have

V< o V)V E B (A.45)
Then there exists a class KL fanct,'ion Bv such that
V() < Bu(V(ta) t —to)¥te B (A.46)
which implies
[z(8}) < 1 (Bo(v2(z(ftol) t = 20)) = Blz(Jto]).t —to), Ve € B. (A7)
On the other hand by (A.44), we conclude that
(O] < ¥ vz op{suplu{m)l) = y(suplu(r)l,ss), VL€ [to.00\B (A.48)
Then by (A.47) and (A.48),
()] < Ble(to), ¢ — to) + Asuplu(r)iras), 2 to20  (Ad9)
By causality, we have
()] < Blatto)t — o) + (sup lu(Mlggree), VE2 2D (ASO)

A function V satisfying conditions (A.42) is called an ISS Lyapunov function.
(]

A.3 Control Lyapunov functions (clf)

This section, taken from [12], presents an extension of the Lyapunov function
concept, which is a useful tool to design an adaptive controller for nonlinear
systems. Assuming that the problem is to design a feedback control law afz)
for the time-invariant system:

&= flz,u), v€R", ueR, £(0,0)=0 (A.51)

such that the equilibrium @ = 0 of the closed loop system:
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& = f(z, alz)) (A.52)

is globally asymptotically stable. We can take a function V(z) as a Lya-
punov candidate function, and require that its derivative along the solutions
of (A.51) satisfy V{z) £ —W (), where W(z)} is a positive definite function.
We therefore need to find afx) to guarantee that for all x € B” such that

Vix
70 fio ala)) < W) (A53)
This is a difficult problem. A stabilizing control law for (A.52) may exist but
we may fail to satisfy (A.53) because of a poor choice of Vi{x) and W(zx). A
system for which a good choice of V{z) and W (z) exists is said to possess a
Control Lyapunov Function {clif). For systems affine in the control:

T

&= flz) +g(z)u, f(O}=0 {A.54)
the clf inequality {A.53) becomes
2 1@+ T glasate) < W@ (4.55)

If V(z) is a clf for (A.54), then a particular stabilizing control law a{r),
smooth for all x # 0, is given

BY ()4 f (B F(2)) +($ 9(2))
u=afr) = {‘ /A %.%y(zg (o), %9(@ #0 (A 56)
0 5.9(x) =0

It should be noted that {(A.55) can be satisfied only if

av oV
-9;9(.1:) ={= af(x) <0, Vz#0 {A.57)
and that in this case (A.55) hecomes «

wor= ) () -0 vero s

The main drawback of the clf concept as a design tool is that for most non-
linear systems a clf is not known. The task of finding a appropriate clf may
be as complex as that of designing a stabilizing feedback law.

A.4 Backstepping ) »

This section is taken from [12].
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v
Assumption A.19 C_qnsz’der the system
¢ &= f(z)+g(z)u, FIO)=0 (A.59)

where © € BR™is the state and u is the control inpul. There exist a contin-
uously differentiable feedback control law

u=al{z),al0) =0 ) " (A.60)

and a smooth, positive definite, radinlly unbounded function V . R" — R such
that

Vv
%—5 [£(z) + g(a)a(z)] < -W(z) <Oz € IR (A.61)
where W : R"® — R is positive sethidefinite.

It should be noted that under this assumption, the control law (A.60),
applied to the system (A.39), guarantees global boundedness of z(f), and
the regulation of W{z) : limy_ Wz} = 0. If W(z) is positive definite, the
control law {A.60) renders the global asymptotic stable equilibrium of (A.59).

Theorem A.20. Let the system (A.58) be augmented by an integrafor:

i = f(z) + glx)€
{=u

and suppose that the first equation of {A.62) satisfies Assumption A.19 wzth
£ as its control. If W{x) is positive definite then

(A.62)

Ve=Vi)+ 316 - a)f (469

"

is a clf for the system (A.62), that is, there exists a feedback control low

u = abz, L)which renders x = 0, £ = 0 the GAS cquilibrium of (4.62). One
such control law chotce is

u= —of€ - afe) + 5o (7(z) + 9(2)e] - Foole) >0 (A6

If W(z) is only positive semidefinite, then there exist a feedback control

low which renders V, € —W,(x,8) < 0, such that Wy(z,&) > 0 when-

ever W(z) > 0 or £ # ol(x). This guarantees global boundedness and con-
(1)

vergence of f(t)] to the largest invariont set M, contained in the sel

F,= {[&] € R+ |W(z) =0, E——-a(z)}.
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Proof. We only prove the first part of the theorem. Proof of the second
part is trivial. Introducing an ervor variable

z =€ — alx) {A.65)
and differentiating analytically (A.63), that is without the need of a differen-
tiator, {A.62) can be written as

&= (IJ8+ g(z)la(z) + 2|
i =u+ 52 [f(z) + glz)afz) + 2)]

Using (A.61), the first time derivative of (A.63) along the solution of (A.66)
can be expressed as

(A.66)

. Bo av

Vo € ~Wa) 4 um G5 (10) +oelale) + ) + Gra@]  (Aom)
Any coutrol law, one such as (A.64), which renders V, < -Walz, &) < ~Wiz),
with W, positive definite in z, guarantees global boundedness of x, z, and
regulation of W(z) and 2(t). O

Corollary A.21. Let the system (A.62) satisfying Assumption A.19 with
alx) = ao(x) be augmented by a change of k integrators so that u is replaced
by £, the state of the last integrator in the chain:

&= f(z) + 92}y

§=6&

: {A.68)
€1 =&
h=1u

For this system, repeated application of Theorem A.20 with &1, -+ , &k as virtual
controls, results in the Lyapunov function~

k
V&, - &) = V(z) + %Z S ai(zb &) (A69)

Any choice of feedback control which renders Vo < —Wylz, &y, ,&) <0,
with Wy(2,61,- - &) = 0 only if W(z) = 0 and & # o _1(z. &1, &ict),
i=1,.....k, guaraniees thai [.’L‘T(t) £y, ,.f;e]Tw globally bounded and con-
vemes to the largest invariant set M, contained in the set

Ea':{[w NI Ek] ER* W) =0, & =ai(z.& 0 G 1)}

for alli = 1,..., k. Furthermore, if W(z) is positive definite, that is,.if z=0 can
be rendered GAS through &, then (A.69) is a clf for (4.68) and the equilibrium
x =0 =0,..,& =0 can be rendered GAS through u.
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A.5 Stabilization in the presence of uncertainty

The power of adap}ive control is exhibited in the presence of uncertain nonlin-
earities and unknown parameters. These uncertainties in linear systems make
the control design procedure difficult and become more serious in control of
nonlinear systems. For nonlinear systems, the states can easily escape to infin-
ity in a finite time. This is referred to as finite escape. The following theorem
introduces the use of a term in the control law called nonlinear damping to
stabilize the systern (A.59} in the presence of disturbance. The material in
this section is based on {}2].

Theorem A.22. Consider the system (A.59) satisfying assumption 2.12 which
is perturbed as

T = f(z) + g(z) [u+ tp(m);A[:c, b)), flo)=0 (A.70)

where p(x) is a vector of known smooth nonlinear functions, and A(z, u,t)is
a vector of uncertain nonlinearities whick are uniformly bounded for all values
of z, u, and t. If W{z) is positive definile and radiolly unbounded, then the
control

u=alz) - k22 @@ @), £ >0 (A71)

when applied to the system (A.70) renders the closed-loop system to be stable
with respect to the disturbance input Ax,u,t) and hence guaranices global
uniform boundedness of z(t) and convergence to the residual set

2
R:{x:[ﬂgql‘lo*ygo-ygl(%)}, {A.7T2)

N

where v1, Y2, 3 are class Ko functions such that

(lz]} £ Viz} < vl
va(lz]) € W{z)

Proof. By using {A.71} and (A.73), the first time derivative of V(z) is

(A.73)

V= G(f +gu) + GropT A

SE(f +gul - k ($29)’ Il + L ge™ A

-Wiz) -k (%9) lel* + FogeTa (A.74)
~Wi(z) - k ()" o] + Fglel 181

~W(z) + 1=

IA A 1A

From (A.74), it. follows that V is negative whenever W (x) > llfﬂl—?ﬂ. Com-
bining this with the second equation of (A.73), we conclude that
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1 {120 -
()| > 75 T‘” =V <0 {A.75)

: : -1 (&K ;
This means that if |z(0)} < v; 7=} = V < 0 then

A 2
Viz()) <m0 (HH (A79)
which implies that
A 2
[z <y loren! ('—‘—Iﬁfﬂ) (A.77)

*u

If on the other hand |z(0)| = ~5 ("A" ) then V(z) < V(x{0)), which implies

(&)l < 77 e (2(0)) (A.78)
Combining (A.77) and (A.78)} leads to the global uniform boundedness of x(t)

||m1|w5max{w;‘o’mowa (“ e ),7r‘owz(|x(on} (A.79)

while (A.75) and the first equation of {A.71) prove the convergence of x(f) to
the residual set defined in {A.72). The ISS property of the closed loop system
with respect to the disturbance A(z, u, t) input follows from Theorem A.18.0)

Combining the above Theorem with Theorem A.20 leads to the following
Corollary.

Corollary A.23. Consider the following 3y3te:r;1
& = f(2) + g(x)u + F(&)T d1(z, u, t) (A.80)

where z € R®, u € R, F(z) is an (n X q) matriz of known smooth nonlinear
Junctions, and A;(z, u,t) is a (¢x 1) vector of uncertain nonlinearities which is
uniformly bounded for all values of x, u, L. Suppose that there exists a feedback
conirol law v = afz) that renders x(t) globally uniformly bounded bounded,
and that this is established via positive definite end redislly unbounded func-
tions V(x}, W(z), and a constant b such that .

% [f(z) + g(x)afx) + F(@)T A1z, u,8)] < —W(;-r) + b' »  (ABY)

Now consider the augmented system
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v d = f(z) + g0 + F@)T Az ut)

'5 =u + LPT(:':!E)AQ(:C'!E: 'U.,t)

.
where p(x,£) i a (g x 1) vector of known smooth nonlinear functions, and
Az, u, &, t) is a (g x 1) vector of uncertain nonlinearities which is uniformly
bounded for all values of z, u, £,t. For this system, the feedback control law

(A.82)

w= —olf - ala)) + 32 [fx) + ool -

e 9(®) = K6 — ale) {"P("""E”g *faare

2
} (A.83)

guarantees global uniform boundedness of z{t} and £(t) with any ¢ > 0 and
k>0 *

A.6 Barbalat like lemmas

This section presents lemmas that are useful in investigating convergence of
time-varying systems.

Lemma A.24. Consider the function ¢ : RY — R. If ¢ is uniformly contin-
sous and lime_ o, [ ¢(7)dr ezists and finite, then
0
lim #(t) = 0. (A.84)
t—o0

Proof of Lemma A.24, See [58].

Lemma A.25. Assume that a nonnegative scalar differentiable function f(t)
enjoys the following conditions ‘

1) ‘if(t)|sk1f(t),v:zo, and 2) fwf(t)dtskz (A.85)
dt 0

where ky and ky are positive constants, then Hmy_qo f(t) = 0.

It is noted that Lemma A.25 is different from Barbalat’s lemma A.24,
‘While Barbalat’s lemma assumes that f{¢) is uniformly continuous, Lemma
2 assumes that |4 f(¢)] is bounded by ki f(2).

Proof of Lemma A.25. Integrating both sides of 1) in {A.85) gives
1
10y 0+ ks [ f(s)ds S 50 +bok,

i
£() > £(0) - Ky [ﬂ f(s)ds 2 £(0) = kaka. (A.56)
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These inequalities imply that f(t} is a uniform bounded function. From (A-36)
and the second condition in (A.85), we have f(t) is also bounded on the half
axis [0,00], L.e. f(t) < k3 with k3 a positive constant. Hence |§f(t)[ < k1ks.
Now assume that lim;_ . f{t) # 0. Then there exists a sequence of points ¢;
and a positive constant ¢ such that f{t;) > ¢, t; — 00, ¢ = o0, — tic1| >
2¢/(k1k3) and moreover f(s) = €/2, s € L; = [t; — ¢/(2kyka}. t; + ¢/(2k1kq)).
Since the segments L; and L; do not intersect for any 7 and 7 with 4 # 7, we

have
/ﬂ%>[mm>2/ﬂmg%k

LT

(A.87)

where M (') is the number of points ¢; not exceeding T. Since limy_, o M(7") =
o0, the integral faw f(t)dt is divergent. This contradicts 2) in (A.85). This con-
tradiction pgoves the lemma.O

Lemma A.26. Consider a scalar system
= —¢cz + p(t) (A.88)

where ¢ > 0 and p(t) is @ bounded and uniformly continuous function. If, for
any initial time tg > 0 and any initial condition x(ty), the solution x(t) is
bounded and converges to 0 ast — oo, then

Jim p(t) = 0. (A.89)

Proof of Lemma A.27. See [68]
Lemima A.27. Consider a firsi-order differential equation of the form

& = —(a{t) + 1))z + fo(£(8)) (A.90)
where fy and f2 are continuous functions, and § : [0,00) — R™ is g time-
varying vector-valued signal that ezwnentzaﬂy converges lo zero and, for all
t = &p = 0, satisfies

£ < % (et e 1 (A1)
where o; > 0,4 = 1,2 and~; are class-K functions. If a(t) enjoys the
property that there is a constant oy such that
iz
fa(f)dr Z o3ty —t3), Y, 28220 (A.92)
f
then there exists a class-K function ¥ and a constant o> U such that

(0] < 7 (et} SN 5 T (A93)
Proof of Lemma A.27. See {69)]. \ )
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ATp til“nes differentiable and smooth bump functions

Differentiable bump functions are widely used in both manufacturing and
control Helds to smooth out discontinuities between surfaces. However, these
functions have been found by non-trial methods so far in the literature, and
can only differentiate up to finite times, In manufacturing, smooth transition
between discontinuous surfaces in cam profile design currently utilizes var-
ious twice differentiable bump functions such as polynomial, harmonic and
cycloidal functions, see Chapter 8 in [70]. In this reference, only polynomial
bump function can be moge than twice differentiable while obtaining harmonic
and cycloidal bump functions, which are more than twice differentiable, is a
matter of trial and error. In contrdl, one time diffetentiable bump functions
have been used to deal with limited sensing capacity of the agents in co-
ordination control of multiple agents, see [71] and [72], to avoid the use of
switching controls [59], which are generally difficult to analyze stability [39].
When the actual dynamics of the mobile agents are taken into account when
designing coordination control systems, it is more desired to use bump func-
tions that can be differentiable more than one time. This allows the designer
to use the standard backstepping technique [12] to extend the kinematics to
dynamics controls. This appendix provides a simple and constructive method
to construct smooth and p times differentiable bump functions.

Definition A.28. A scalar function h(x,a,b) is called a p times differential
bump function if it enjoys the following properties

1) h(x,e,b) =1 if 0<z<Le,

2) h(x,a.b)=0 if x>0,

3 0<hizab<l fa<z<h (A.94)
4) h(z,a,b) is p times differentiable with respect to 2*

where p is a positive integer, * € Ry, and a and b are constants such that
0 < a < b. Moreover, if p = 0o then the function h(z,a,b) is called a smooth
bump function,

Construction of differentiable bump functions is given in the following lemma.
Lemma A.29. Let the scalar function h(z,a,b) be defined as
a [Z flr—a)f(b—r)dr

I flr—a)f(d-r)dr
with the function f(y) being defined as follows

fy =04y <0, flyy=9y)ify>0 (A.96)

h{z,a,b)=1

(A.95)
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where the function g{y) enjoys the following properties
¢) gir—ajglb—1)>0 e<T<h (A.97)

&
by  gly) is p times differentiable with respect to y, and 1“5& 9 ag(ky)
y— Y

=0,
k=12 ..p-1
Then the function h(z,a,b) is a p times differenticble bump function.

Proof. We need to verify that the function h(x, a,b) given in {A.95) sat-
isfy all properties defined in {A.94). Property 1) holds because by {A.96) for
all 0 < z < a, we have j: fir — a)f{b - r)dr = 0. Property 2) holds since
by (A.96) we have [* f(r — a)f(b—r)dr = [ f(r —a)f(b~ 7)dr for all
z 2 b. To pyove Property 3}, we first note from Property a) of the function

g(y} given in (A.97) that fz flr—a)f(b—7)dr > 0foralla < x < b. There-

fore, 0 < %,,f((—::;%:))% < 1, which means that Property 3} of the function
h{z,a,b) holds. To prove Property 4), we just need to show that f{y) isp—1
times differentiable. We first note that f(y) is p times differentiable except at

y = 0. Hence, we only need to verify that f*)(0) = %ﬁﬂ| , = 0 for any
y=

positive integer k < p. Clearly, Yim,_g- f*)(y) = 0 since f(y) =0, Vy £ 0.
On the other hand, since f(y) = g(y}), ¥ > 0, from Property b) of the function
9{y) we have limy_gs+ F®(y) = lim,_o+ 9 (y) = 0, where ' = Jay}@
Since both left- and right-hand limits are equal to 0, we have f(*)(0) = 0.
Hence Property 4) holds, O

Remark A.30. Several examples of the function g(y) are g(y) = v*, ¢(y) =
tanh(y)?, g{y) = arctan{y®) for any positive igteger p, and g(y) = sin{y)* for
any even positive integer p. It is trivial to check that these functions satisfy
all properties listed in (A.97). All the butnp functions used in [70] and [71]
can be directly derived from Lemma A.29 by picking a proper function g(y}.

Corollary A.31. . If the function g(y) in (A.97) is taken as gly) = exp(—%)
then the function h{zx,a,b) defined in (A.95) is a smooth bump function.

Proof 'We first note that Property a) of the function g(y) in (A.97) can
be proven without a diﬂiculty We focus on proof of Property b). We note that
g*Ny) = 76%5,— Qr(l ye ¢ where Qk( ) is & polynomial éunction of L Y , and
k is any positive mteger We will prove Property b).-of the function g(y) in
(A.97) by induction. It is clear that limy_g+ gV (y) = lim,..g« ﬂu—l

-1
limy_g+ T" = limgnoo % = 0 where § = ; and we have used lHopltal‘s

L3
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Fig. A.1. A smooth bump function and its first and second derivatives.

rule {73]. This means that Property b} of the function g(y) hoids for & = 1.
Assuming that lim,_, o+ ¢¥(y) = 0, we now compute limyﬂgﬂg(k“)(y) as
follows:

(6) (4} — g%}
C kD o i S g0 1 1,
yh_{g}l+g () ,,'}If]h 0 yl_n_rg+ ka(y)e
I NS A (

—yl_l.%l_'_Qk(;)e v ‘g'i“Jo"e_e"‘O {A.98)

where I'Hopital's rule has been used, £ = , and Qr(€) = £Qu(£) is another

‘polynomial of €. Therefore we have proved that lim,..o+ g (y) = 0 for any
k, which means Property b} of the function g(y) holds for any positive integer
p, i.e. p can be equal to infinity. By Definition 1, the function h(zx,a,b} is a
smooth bump function.O
Fig. A.1 illustrates a smooth bump function and its first and second derivative,
with ¢ = 0.5 and b = 1.5.
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